
AD-A260 484 

Millimeter-Wave Applications of 
Semiconductor Dielectric Waveguides with 

Plasma Layers (Surface or Buried) 
Generated from Semiconductor Lasers 

Final Report 

Jerome K. Butler, Ph.D. 
Electrical Engineering 

September 1992 ,,y  •■■■' Ai.^vt 

V-;3 19 19931'1 
U. S. Army Research Office ^ 

DAAL03-89-K-0029 

Southern Methodist University 
Dallas, TX 75275 

Approved for Public Release; 
Distribution Unlimited 

a.V 

93-03405 
BIHA'r 



DISCLAIMER 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



The view, opinions, and/or findings contained in this report are those of the 
author and should not be construed as an official Department of the Army 
position, policy, or decision, unless so designated by other documentation. 



SECURITY CLASSIFICATION OF  THIS PAGT 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION 

Unclassified 

lb. RESTRICTIVE MARKINGS 

2a. SECURITY CLASSIFICATION AUTHORITY 

2D. OECLASSIFICATION/DOWNGRADING SCHEDULE 

3. DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release: 
distribution unlimited 

4   PERFORMING ORGANIZATION REPORT NUMBER{S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 

6    ,g5339.S^l 
OF  MO 6a. NAME OF PERFORMING ORGANIZATION 

Box 302 
Southern Methodist University 

6b. OFFICE SYMBOL 
(If applicable) 

7a. NAME OF MONITORING ORGANIZATION 

US Armv Research Office 

6c. ADDRESS (Gfy, State, and ZIP Code) 

Dallas, Texas 75275-0335 

7b. ADDRESS (Gfy, State, and ZIP Code) 

P.O.   Box   12211 
Research Triangle Park, NC  27709-2211 

8a. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

Army  Research Office 

8b. OFFICE SYMBOL 
(If applicable) 

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

DAAL03-89-K-0029 

8c ADDRESS (City, State, and ZIP Code) 

Research Triangle  Park,   NC     27709-2211 

10. SOURCE OF FUNDING NUMBERS 

PROGRAM 
ELEMENT NO. 

PROJECT 
NO. 

TASK 
NO. 

WORK UNIT 
ACCESSION NO. 

1 Mmime^ of Semiconductor Dielectric Waveguides with 

Plasma Layers (Surface or Buried) Generated from Semiconductor Lasers 

\2. PERSONAL AUTHOR(S) 

Jerome  K.   Butler 
13a. TYPE OF REPORT 

Final 
13b. TIME COVERED 
FROM Dec 8&_ TO sep 92 

14. DATE OF REPORT {Year, Month, Day) 
92 Sept. 30       

15 PAGE COUNT 
70 

16. SUPPLEMENTARY NOTATION  The view, opinions and/or findings contained in this report are those 
of the author and should not be construed as an official Department of the Army Dosition, 
policy, or decision, unless so designated by other documentation. 

17 COSATI CODES 

FIELD GROUP SUB-GROUP 

18. SUBJECT TERMS {Continue on reverse if necessary and identify by black number) 

19   ABSTRACT {Continue on reverse if necessary and identify by block number) 

Abstract -       ---    - 
This research program was aimed at the theoretical and experimental 
investigations of semiconductor devices and waveguides with applications 
in millimeter wave systems.  The major components considered included 
waveguide phase shifters, attenuators, and periodic structures designed 
to operate at the Second Bragg frequency.  Most of the effort was 
directed at theoretical and experimental understanding of the second- 
order Bragg structures since these components produce the most efficient 
radiating antennas.  With a goal of locking several independent 
oscillators through gratings in the dielectric waveguide, the grating 
plays one of the most important roles in the system integration. 
Accordingly, we developed two comprehensive computer models of 
dielectric gratings and made experimental measurements on more than 
fifty waveguide structures. 

20   DISTRIBUTION/AVAILABILITY OF ABSTRACT 

D UNCLASSIFIEQ/UNUMITEO      D SAME AS RPT. D DTlC USERS 

21. ABSTRACT SECURITY CLASSIFICATION 
Unclassified 

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code)   22c. OFFICE SYMBOL 

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted 

All other editions are obsolete 
SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



TABLE OF CONTENTS 

Summary       3 

Progress Reports 

01 Jan 89 - 30 Jun 89  5 

01 Jul 89 - 31 Dec 89  7 

01 Jan 90 - 30 Jun 90  9 

01 Jul 90-31 Dec 90  12 

01 Jan 91 -30 Jun 91  14 

01 Jul 91-31 Dec 91  16 

Personnel  20 

Publications  21 

A Numerical Investigation of Wave Interactions in Dielectric Waveguides 
with Periodic Surface Corrugations  22 

Experimental Verification of Grating Theory for 
Surface Emitting Structures  32 

Theoritical and Experimental Investigation of Period Corrugated 
Dielectric Waveguides  44 

A Boundary Element Technique Applied to the Analysis of Waveguides 
with Periodic Surface Corrugations  54 

Surface Emitting Characteristics of Silicon Waveguides    63 

Experimental Analysis of Metal Coated Dielectric Waveguides    65 

Design and Performance of Corrugated Waveguides Based on 
Slab Waveguide Principles   67 

DTIC QUALITY rNCP^THD 3 

Accession For 

i NT IS  ^A&I 
DTK' T',H 

Jv-:' : r<-:.'.! Ion. 

a 
a 

Dial 

to 

.i 
l?t-.M.%1 



SUMMARY 

This project was concerned with the development of millimeter wave dielectric 
waveguides and waveguide structures periodic dielectric variations. A chief technical 
objective of this effort was toward the development of a novel highly integrated solid- 
state high-power millimeter wave source which can be focussed to yield a coherent 
narrow beam, capable of producing an effective scanning radiation pattern. When the 
waveguide material is partly fabricated by an optoelectronic or photoactive material such 
gallium arsenide, semiconductor surface emitting lasers may be used to induce a 
controllable periodic charge carrier plasma within the surface of the waveguide. 

Dielectric waveguides at millimeter wave frequencies are desirable because these 
guiding structures have relatively small dimensions and systems can be easily integrated 
on single wafer chips. The components have applications for: (1) grating surface emitting 
antennas, (2) millimeter wave filters, (3) millimeter wave phase shifters and others. 
Extensive development of theoretical and computer models of dielectric waveguides have 
been accomplished. Experiments using both semiconductor (silicon) and insulator 
(alumina) waveguide materials have been performed. 

A key factor pertaining to periodic waveguides used as an antenna is the overall 
length of the structure (aperture dimension). If the structure is long (too many grating 
periods), most of the total input power may be extracted over a length much smaller than 
the actual grating section. In addition, radiation at broadside (Second Bragg condition), 
is minimized for very long gratings. For effective designs, careful tradeoffs between 
grating length and grating strength need to be considered. In the experimental work some 
of the early waveguides had relatively short grating sections, however, later we started 
making much longer grating regions. (The resulting antenna dimensions were about two 
inches.) The new waveguide structures were excellent in quality and exhibited classical 
w-b dispersion characteristics around the second Bragg condition. 

The ultimate goal of this project was to progress toward development of a high- 
power scanning millimeter-wave antenna. High powers will be accomplished by locking 
a large number of individual millimeter wave oscillators. (An alternative design is to 
have a single master oscillator that feeds into a periodic configuration of pairs of an 
amplifier and a grating.) Because of these potential designs we have experimentally 
studied grating sections with input from both directions. An experimental configuration 
used split the oscillator power for launching at both ends of the grated waveguide 
structure. With the new arrangement, power was launched into the dielectric waveguide 
from both the right and left directions. (This configuration corresponds to a situation 
where the grating region would separate two oscillators to be locked into one coherent 
system. The grating acts both as a feedback mechanism as well as the antenna.) 
Depending on the relative phase of the two inputs, the far-field radiation pattern can be 
maximized or minimized. The two-side incidence case shows that in the out of phase 
condition, the radiation power is minimum at the second Bragg frequency. 



In addition to the improvement of the design program of the periodic waveguides, 
we performed simulation experiments of waveguide structures that have excited plasma 
layers. These new periodic structures have a fixed grating waveguide coupled with a 
separate confined plasma layer in the opposed waveguide surface. Typically the new 
structures would be fabricated on wafers composed of either (1) silicon on sapphire (the 
grating formed in the sapphire layer and the plasma layer excited in the silicon layer), or 
(2) gallium arsenide on aluminum gallium arsenide (the grating formed in the aluminum 
gallium arsenide layer and the plasma layer excited in the gallium arsenide layer). In our 
experiments, we started with an AI2O3 waveguide with a grating formed on one surface. 
The waveguide was designed to radiate broadside. Next, a layer of metal foil was 
attached to the waveguide on the side opposite the grating layer. (The metal foil was to 
simulate an excited plasma layer with high electron/hole concentrations.) The radiation 
pattern measured with the foil attached produced a beam at about 30° to the broadside 
direction. This implies that a corresponding silicon on sapphire structure would 
electronically scan about 30°. 
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BRIEF OUTLINE Or RESEARCH FINDINGS 

The work over the first six months on this program has 
been concentrated on the development of the theory of 
gratings on dielectric waveguides.  There are several 
theoretical approaches that can be used for the analysis of 
gratings; the most common approach is to apply a perturbation 
method such as the coupled-mode theory.  However, these 
approximate methods are inaccurate for gratings fabricated 
with films of thin metals or plasma induced gratings. 
Therefore, our grating studies employ the Boundary Element 
Method which can be applied to most waveguide structures of 
interest. 

In the next phase of the program we will make 
measurements of dielectric strucutures in the vicinity of 94 
GHz.  Consequently, we have prepared simple dielectric 
waveguides using alumina (AI2O3)which has an approximate 
relative dielectric constant of 10.  Four waveguides with 
slightly different grating periods have been fabricated with 
a typical guide shown in the figure below.  (The cross- 
section of the waveguide and a standard scale were 
photographed using an optical microscope.)  The gratings were 
cut in the alumina using a diamond saw.  The overall length 
of the waveguide is approximately 30 periods.  Simple 
waveguide calculations indicate the millimeter wavelength 
along the guided structure is approximately 1 mm at 94 GHz so 
that the grating period of 1 mm produces causes resonance at 
the 2nd Bragg condition. 

Fig. 1 A dielectric waveguide of AI2O3. 
fabricated using a diamond saw. 

The grating was 
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BRIEF OUTLINE OF RESEARCH FINDINGS 

The work over the last six months has been divided between theoretical and 
experimental studies of periodic waveguides. We are developing theory to esti- 
mate the transmission and reflection characteristics (Scattering parameters) of a 
dielectric waveguide with periodic teeth cut in the dielectric. Our laboratory has 
cut approximately 15 dielectric guides fabricated with A1203 as discussed in the 
previous progress report. 

Experimental measurements in the 90-100 GHz range is proceeding at an 
excellent pace. Experimental and theoretical results are in also excellent agree- 
ment. There are a large number of publications that indicate that 2nd order 
Bragg reflectors do not radiate at the second Bragg frequency. However, we have 
shown theoretically and experimental radiation (Broadside) from finite length 
grating structures. 

In the next period we will continue our measurements of the radiation fields 
from the grating surface emitters (GSE) fabricated with Alo03. In addition we 
will start fabrication of silicon on sapphire dielectric structures. The Si on sap- 
phire dielectric waveguides can be controlled by optical signals. 
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BRIEF OUTLINE OF RESEARCH FINDINGS 
The work of the last six months has been in both 

theoretical and experimental studies. 
Our experimental work has been concerned with the 

fabrication of dielectric waveguides in AI2O3.  Since we are 
performing experimental measurements at about 100 GHz, most 
of the waveguide structures have been fabricated with AI2O3 
plates that are 40 mils thick.  (The waveguide cross sections 
are 40 mils x 2 mm.  These structures support the dominant TE 
or TM modes depending upon the polarization of the exciting 
wave that is fed to the dielectric structure.)  To date we 
have made about 20 different waveguide structures that have 
2nd order Bragg resonances in the range of 85 to 105 GHz. 
Since these structures are tedious to make, it usually takes 
about 3 days of laboratory work.  The basic aim in the 
fabrication of the different structures is to understand the 
necessary grating geometries that will produce weak or strong 
gratings.  A strong grating will outcouple a major portion of 
the electromagnetic power that enters the grating after about 
20-30 periods while a weak grating outcouples the light after 
more than 100 periods.  In general, the grating period is 
dependent upon several parameters including the height of the 
teeth in the waveguide.  However, we have found that most of 
the structures have grating periods of about 1.1 mm at 100 
GHz, so that a grating with 24 periods is about 2.6 cm in 
length.  We have also found that for structures with teeth 
height greater than about 15 mils that most of the power 
entering the grating section is outcoupled after about 24 
periods.  Consequently, the radiating apertures are about 2 
cm wide.  On some structures we have fabricated two regions 
with different grating periods; one grating is strong and the 
other is weak.  We have made these structures in order to 
study the effects of reflection and transmission of strong 
grating sections.  The strong grating is designed at a 
particular frequency to radiate broadside (2nd Bragg 
Condition).  The weak grating is designed for the 2nd Bragg 
at a different frequency. 

On all the dielectric waveguides with designed gratings 
we measured the the radiation pattern at several different 
frequencies (about the 2nd Bragg frequency).  On some 
structures we excite the grating with equal amounts of power 
at both ends of the waveguide.  By adjusting the phase of the 
wave at either end of the waveguide, the radiation field can 
be maximized or nulled at the 2nd Bragg frequency.  This 
study is important when we eventually start to couple several 
oscillators via  the grating region.  One long range goal is 
to couple many sources using the gratings for outcoupling as 
well as feedback to the various oscillators. 

Theoretical work is proceeding.  The boundary element 
approach to solving for the characteristics of periodic 
structures is being fully developed.  This approach is best 
for structures of arbitrary-shaped teeth. It is by nature a 
non-perturbative approach. 

10 



SPIE Abstract January 1991, Los Angeles 

Experimental Verification of Grating 
Theory for Surface Emitting Structures* 

R. G. N. Ayekavadi, C. S. Yeh and J. K. Butler 
214-692-3113 (o), 214-692-4099 (fax) 

Department of Electrical Engineering 
Southern Methodist University 

Dallas, TX 75275 

G. E. Evans 
David Sarnoff Research Center 

Princeton, NJ 08543-5300 

Surface emitting structures are modelled using a rigorous Floquet-Bloch 

analysis of periodic structures. The theory evaluates phase constants, attenuation 

coefficients, reflection, transmission and outcoupling of power from a single grating 

section. In the fabrication of dielectric grating structures, the waveguide and grating 

dimensions were computed using approximate methods that employ the average 

dielectric constant of the corrugated region. The grating structures were designed 

so that only the n=-1 spatial harmonic radiates (2nd order Bragg grating). The far- 

field patterns of the experimental structures were compared with the theoretical 

results obtained using the rigorous Floquet-Bloch analysis. The reflection, 

transmission and outcoupling of power from a single grating section are also obtained 

from experiment and theory. Experimental verification of the model is achieved 

using millimeter waves of 100 GHz in dielectric waveguides fabricated from AI2O3. 

'Supported in part by the U. S. Army Research Office. 
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BRIEF  OUTLINE  OF  RESEARCH FINDINGS 

Briefly, the work over the last period has progressed 
along both theoretical and experimental development of 
dielectric surface emitting structures. 

Experimental work over the past period has been 
concerned with the design and fabrication of periodic 
waveguides fabricated with AI2O3.  The waveguides were 
designed for first order Bragg radiation in the frequency 
range from 90 to 100 GHz.  A number of waveguides have been 
designed and constructed including some with multiple 
sections of corrugations on them.  The radiation pattern from 
these waveguides were measured by electronic scanning of the 
frequency.  The experimental pattern was compared with that 
obtained from a simulation based on the Huygen-Fresnel 
radiation theory (for the -1 order Floquet-Bloch wave).  By 
frequency scanning the local millimeter wave sources, the 
far-field pattern scanned relative to the normal of the 
waveguide.  For most of the waveguide structures, the far- 
field beam or major lobe scanned from 1.8 to 2.0 degrees per 
GHz.  Thus, the beam could be frequency scanned about 20 
degrees over a 10 GHz range or about 10 percent of the 
operating frequency. 

Experimental studies were also carried on a two section 
grating structure, illustrated below.  Each grating section 
was about 25 teeth long or about 30 mm.  The separation 
between the grating ends was about 20 to 25 mm.  Each of the 
grating was designed to radiate broadside at different 
frequencies.  For example one was designed to radiate at 
about 98 GHz while the other at 102 GHz.  The two section 
waveguide was then excited with a 100 GHz source.  The power 
was split so that the double grating section was excited with 
equal amounts of power from both directions.  The 
experimental and theoretical radiation patterns had very 
close agreement.  When the field at the input of each grating 
had identical phase, the far-field pattern produced a single 
broadside lobe. 

uwi: 

3dB Coupler 

Variable I f Vanaole 
Aitetv   iiia""' .r—    Phase 
uaior    r I   Shifter 
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BRIEF OUTLINE  OF RESEARCH FINDINGS 

Experimental work over the past period continued with 
design and fabrication of periodic waveguides fabricated with 
AI2O3.  Some of the early waveguides made during the program 
had relatively short grating sections, however, lately we 
have started making much longer grating regions.  Our new 
waveguide structures seem to be excellent in quality and tend 
to exhibit classical CD-ß dispersion characteristics around 
the second Bragg condition.  The modal attenuation 
coefficient a also has the classically sharp null condition 
at the second Bragg frequency.  The experimental plots are 
shown below. 

To perform necessary characterization of the structures, 
the far-field radiation patterns were also measured.  In our 
previous report we discussed the experimental configuration 
that split the oscillator power that feeds the grated 
waveguide structure.  With the new arrangement, power is 
launched into the dielectric waveguide from both the right 
and left directions.  {This configuration corresponds to a 
situation where the grating region would separate two 
oscillators to be locked into one coherent system.  The 
grating acts both as a feedback mechanism as well as the 
antenna.)  Depending on the relative phase of the two inputs, 
the far-field radiation pattern can be maximized or 
minimized.  The two-side incidence case shows that in the out 
of phase condition, the radiation power is minimum at the 
second Bragg frequency. 
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BRIEF  OUTLINE  OF  RESEARCH  FINDINGS 

Experimental and theoretical progress over the past 
period has progressed at an excellent rate.  We are extremely 
happy with the correlation of theoretical calculations with 
experimental measurements of the periodic waveguides 
fabricated on the AI2O3 material. 

In addition to the improvement of the design program of 
the periodic waveguides, we have performed simulation 
experiments of waveguide structures that have excited plasma 
layers.  These new periodic structures have a fixed grating 
waveguide coupled with a separate confined plasma layer in 
the opposed waveguide surface.  Typically the new structures 
would be fabricated on wafers composed of either (1) silicon 
on sapphire (the grating formed in the sapphire layer and the 
plasma layer excited in the silicon layer), or (2) gallium 
arsenide on aluminum gallium arsenide ( the grating formed in 
the aluminum gallium arsenide layer and the plasma layer 
excited in the gallium arsenide layer) .  In our experiments, 
we started with an A1203 waveguide with a grating formed on 
one surface.  The waveguide was designed to radiate 
broadside.  Next, a layer of metal foil was attached to the 
waveguide on the side opposite the grating layer.  (The metal 
foil was to simulate an excited plasma layer with high 
electron/hole concentrations.)  The radiation pattern 
measured with the foil attached produced a beam at about 30 
to the broadside direction.  This implies that a 
corresponding silicon on sapphire structure would 

electronically scan about 30 . 

Review of submitted paper: 

Dear Dr. Walpole 

Here is the review of the manuscript by Butler et. al. which was 
passed to rae by Paul Jessop. 

Report on "A Boundary Element ...." 

This paper is excellently written and represents an important 
contribution to the analysis of integrated gratings. The paper 
also has considerable pedagogical va,iue and should therefore be 
published as is. 
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Abstract 

Boundary integral formulation is used to characterize Floquet- 
Blocb modes of two-dimensional multilayered periodic waveguides. A 
new technique is described for matching fields inside the grating to 
those external to the grating region. Although a simple four layer 
structure is used to illustrate the method an extension to multilayer 
waveguide structures is straight forward. The mathematical formal- 
ism has been simplified, allowing for more efficient computations using 
fast Fourier transform algorithms. 

'Supported in part by the Army Research Office and the Department of the Air Force. 
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ABSTRACT 

In : his experimental study we investigate the guided mode-radiation mode coupling of 
periodic dielectric waveguides. The dispersion relation and the attenuation constant along the 
dielectric waveguide were measured around the second Bragg frequency. The far field radiation 
pattern was also measured. Floquet theorem was applied to solve wave equations. Zero order 
approximation was used in the design of waveguides. For surface emitting structures used in 
surface emitting lasers and couplers, the most important parameter is the dispersion relation 
and attenuation constant along the corrugated waveguide around the second Bragg frequency. 
The dispersion and attenuation measurement shows that the attenuation constant minimum 
occurs at the second Bragg frequency. This corresponds to the maximum Q point of the corru- 
gated waveguide. Two side incidence shows that in the out of phase condition the radiation 
power is minimum at the second Bragg frequency and have two lobes. 

* Supported in part by the Army Research Office. 
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A Numerical Investigation of Wave Interactions in 
Dielectric Waveguides with Periodic Surface 

Corrugations 
G. HADJICOSTAS, JEROME K. BUTLER, FELLOW, IEEE, GARY A. EVANS, SENIOR MEMBER, IEEE, 

NILS W. CARLSON, MEMBER, IEEE, AND ROBERT AMANTEA, SENIOR MEMBER, IEEE 

Abstract—The modal properties of planar mullilayered waveguides 
with a rectangular surface corrugation are investigated. A rigorous 
full Floquet numerical analysis is performed for the fundamental TE 
mode of the infinite periodic structure. The algorithm is based on a 
boundary element solution of the integral wave equation in the grating 
region. A generalized transverse resonance-type matrix equation is 
sought that matches all continuity, periodicity, and boundary condi- 
tions. The resonant solutions of this characteristic equation represent 
all the surface and leaky waves supported by the structure. The exact 
dispersion characteristics, as well as the amplitudes of the space har- 
monics, are computed and discussed in connection to radiation losses 
and coupling mechanisms near resonant Bragg conditions. In partic- 
ular^ a specific double-heterostructure GaAs-AIGaAs waveguide ge- 
ometry has been examined in detail. Under appropriate boundary con- 
ditions, an estimate of the power reflection coefficient is computed for 
a finite length distributed Bragg reflector. 

I. INTRODUCTION 

IN this paper, we present a rigorous numerical analysis 
of mode propagation in periodic optical waveguides 

with a rectangular surface corrugation. This class of open 
thin-film structures has attracted considerable interest be- 
cause of their important applications in distributed Bragg 
reflector (DBR) and distributed feedback (DFB) lasers, 
beam steering devices, and as output and input couplers. 

The analysis of wave propagation in transversely 
bounded open periodic waveguides becomes complicated 
by the possible presence of radiated waves. The problem 
has been analyzed in the past by numerous methods and 
under a wide variety of possible assumptions. The cou- 
pled wave formulation [1]~[9] and the modal approach 
[I0]-[16] are among the most commonly used techniques. 
In their complete form, both techniques can produce exact 
results. They constitute merely alternate representations 
of the electromagnetic field inside the grating: one in terms 
of phase matched, oppositely traveling waves with slowly 
varying amplitudes, and the other in terms of waves with 

Manuscript received October 5, 1989: revised October 10, 1989. This 
work was supported in part by the U.S. Army Research Office and the U.S. 
Department of the Air Force. 

C. Hadjicostas and J. K. Butler are with the School of Engineering and 
Applied Science. Southern Methodist University. Dallas. TX 75275. 

G. A. Evjns, N. W. Carlson, and R. Amantea are with the David Sar- 
noiT Research Center. Princeton. NJ 08543. 

IEEE Log Number 9034735. 

an infinite number of space harmonics (Floquet-Bloch 
waves) with amplitudes which are inherently adjusted as 
to satisfy the grating boundary conditions. It is the intro- 
duction of various simplifying assumptions that reduces 
the full and exact formulations to the approximate theo- 
ries encountered in the literature. 

Typical assumptions in the coupled wave formulation 
(confusingly referred to as coupled mode approach) in- 
clude: 1) retaining only one scattered wave in addition to 
the fundamental (two-wave coupled wave theory), and 2) 
neglecting second derivatives of the field amplitudes (first 
order, two- or multiwave coupled wave theory). These 
assumptions frequently yield simple analytical results; 
however, they often require a priori knowledge of the 
coupling phenomena and the physical mechanisms in- 
volved. 

On the other hand, the modal formulation (otherwise 
known as the Floquet-Bloch approach) is inherently ac- 
curate. Even though the wave amplitudes are obtained by 
a multiple-step computational process, the formulation 
does not require any a priori assumptions. Based on the 
results obtained from the rigorous analysis, simplifica- 
tions can be subsequently introduced that may discard 
waves with negligible amplitudes (truncated two- or four- 
wave modal theory). 

Recent investigations of second-order gratings using the 
coupled wave approach [17]-[18] describe the field in the 
grating as a sum of two oppositely propagating waves 
A(z), B(z) with slowly varying amplitudes and propa- 
gation constants K and -K where K = 2x/A and A is the 
grating period. The presence of radiation and other scat- 
tered waves simply affects the coupling between the am- 
plitudes A(z) and B(z) through the introduction of added 
constants to the usual set of two-wave coupled wave equa- 
tions. These constants have the form of overlap integrals 
and represent the reactions of the various scattered waves 
back to their generating or phase-matched oppositely trav- 
eling waves. It is assumed that only the two fundamental 
waves give rise to and have feedback from other scattered 
waves. In addition, higher derivatives and other terms are 
excluded from the coupled wave equations. The method 
[17], [18] is essentially a perturbation-iteration technique 
in which the initially assumed field distribution is modi- 

0018-9197/90/0500-0893S01.00 © 1990 IEEE 
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fied by the improved perturbation method suggested in 
[19). The resulting set of equations is thus solved in a 
self-consistent manner that allows them to be used even 
with thick corrugated gratings. 

Peng et al. [14] used the modal formulation to numer- 
ically solve the cases of holographic and rectangularly 
corrugated multilayered films. As opposed to the pertur- 
bation technique discussed above, here, the exact field 
representations are assumed in each region and are sub- 
sequently matched at the layer boundaries. In the uniform 
regions surrounding the grating region, the field is ex- 
pressed as an infinite summation of harmonics -&n(x) exp 
(-~?*Z) which may be regarded as modes with a simple 
sinusoidal transverse variation, which propagate along z 
with a propagation constant Y„(exp (y'wf) assumed). In- 
side the grating region, the transverse variation of ^„(x) 
becomes considerably more complicated because of the 
coupling between all of the space harmonics due to the 
periodic variation in the dielectric constant in this region. 
For every nth harmonic, the transverse propagation con- 
stants and wave amplitudes describing \Jsn(x) have to be 
calculated beforehand by numerical solution of a trun- 
cated matrix eigenvalue problem. 

The computational method described in this paper re- 
lies on the numerical solution of the integral wave equa- 
tion inside the grating region. This formalism has distinct 
advantages over the more traditional ones, especially 
when the boundary conditions are imposed through a col- 
location (point-matching) technique. The unknown field 
quantities together with all the boundary conditions of the 
problem are explicitly incorporated in the defining equa- 
tion. For the problem at hand, the boundary conditions on 
the longitudinal interfaces of the grating layer are func- 
tionally known because of the Floquet expansion of the 
fields in the uniform layers above and below it. On the 
other hand, the boundary conditions for the transverse in- 
terface between the periodic unit cells are naturally pro- 
vided by Floquet's theorem and continuity requirements. 
Thus, the method can be applied in a rather straightfor- 
ward way towards a rigorous solution of the periodic 
problem, without any a priori assumptions and to a user- 
specified accuracy. The boundary integral formulation is 
a natural choice for this problem because we seek the field 
solution only on the grating layer interfaces in order to set 
up a transverse resonance-type characteristic equation for 
the propagating mode. 

In the following section, the determinantal equation for 
the propagating waves is set up. A brief discussion de- 
scribing the transformation of Maxwell's equation from 
its usual differential form to an integral equation is pre- 
sented. Some considerations regarding the selection of the 
appropriate Green's function and the handling of existing 
singularities are pointed out. A boundary element method 
[20]-[21] is subsequently applied to discretize the integral 
equation; the resulting homogeneous matrix equation to- 
gether with appropriate continuity and periodicity condi- 
tions constitutes the secular (determinantal) equation for 
the problem. Essentially, the procedure is the one applied 
by Matsumoto et at, [15] for the solution of the metallic/ 
plasma stripe leaky wave antenna. 

In Section III, the results are described in terms of dis- 
persion-attenuation (Brillouin) diagrams k0A - ßh/ah. 
Furthermore, the magnitudes of the most important space 
harmonics are given. The spectral characteristics of the 
radiating (fast harmonic) constituent of the propagating 
wave are examined before and after the second Bragg res- 
onant condition. In Section IV, based on the amplitude 
findings of the previous section, an estimate of the power 
reflection coefficient from a finite length second-order 
DBR geometry is calculated. A selected four-wave (two 
fundamental components and two associated space har- 
monics) coupled wave formalism has been applied, based 
on the fact that the amplitude of the ( -1) radiating com- 
ponent decreases to negligible levels in the vicinity of the 
second Bragg. 

II. MATHEMATICAL FORMULATION 

Consider the double-heterostructure GaAs-AlGaAs 
waveguide geometry with a grating shown in Fig. 1. The 
substrate (AlGaAs) and superstate (air) regions are as- 
sumed to be half spaces. The grating consists of the pe- 
riodic juxtaposition of homogeneous rectangular Region 
A (dielectric constant K3) and Region B (dielectric con- 
stant K\). A time harmonic TE wave propagates in the 
axial z direction as exp (jcat - y0z), with the field inva- 
riant with respect to y. The complex propagation constant 
y0 = a + jß. Since the dielectric materials of such a 
structure are regionally homogeneous, the field in each 
region satisfies the scalar Helmholtz equation 

&+ 5) *(*'z) + *°"*(-r'z) = ° (i) 

where for the TE case, ^ = Ey\ k0 is the free-space prop- 
agation constant and K is the relative dielectric constant 
of the region. In the uniform layers above and below the 
grating, the field expressions have to appear in the Flo- 
quet form in order to satisfy the boundary conditions on 
the grating surface. In the z th layer, the solution becomes 

*,(*, z) = 2 \P-,n{x) exp (~ynz) (2) 

where 

yn = <* +jßH - a +j(ß + nK)\ 

n =••■,- 1,0, 1, ■• (3) 

(It should be noted that j30 is identical to /?.) The trans- 
verse wave functions outside the grating are given by 

^inexp [hln(w2 - *}]; 

x > w2 

din cos {h^x) + Byn sin (hinx)-t 

-w, < x < 0 Mx)=  ,     L Vli, ,,M   w AAn cos (h4nx) + BAn sin {h4nx); 

-vv3 - w4 < x <  —Wj 

A$n exp [h5n(w3 -f w4 + x)]'i 

x < — w$ - >v4 
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Fig. 1. (a) The basic geometn. of the grated region for the waveguide. The 
relative dielectric constant <t i x. ; j = «< .1. -; ). (b) A general unit cell 
of the rectangular corrugation where Region A has «t« = K_< and *Ä = «,. 

and the transverse wavenumbers satisfy 

A?„ - + (*5*. + 7;):       < « 3,4. (5) 

If the layer has finite thickness, there are two amplitude 
coefficients A,„ and Bin. On the other hand, in semi-infinite 
layers, we keep only the Component whose field decays 
exponentially away from the structure, provided the spa- 
tial harmonic is proper. In addition, a relation between 
the partial wave amplitudes \pn in each uniform layer is 
found by imposing continuity of the tangential field com- 
ponents ( £,, dEj'dx) across the layer boundaries. 

Inside the grating layer, recall that the coefficients ^n 

are all coupled together. We choose to avoid the laborious 
exact solution for the field everywhere inside the grating 
and we seek a relation between ¥ and its normal deriva- 
tive only along the boundary enclosing the homogeneous 
regions RA and R8. Towards this goal, we convert (1) into 
an integral equation. Results based on the numerical so- 
lution of integral equations have the advantage of being 
accurate even if the boundary conditions are only approx- 
imately met. In particular, for the problem at hand, the 
field and fluxes will be assumed piecewise constant and a 
collocation (point matching) technique will be used to 
impose field continuity and periodicity. 

According to [20|, through the use of Green's second 
identitv. (1) becomes 

J . R 
\ \   [C(K. f. r0)\\?*(r) - *(r)\\:C(«. f. r„)] ds 

=   ^   | G(K. r. r„) —; Y(r)  
on ön 

dl. 

89? 

The left-hand side is a surface integral over the transverse 
plane Region R, the right-hand side is a closed line inte- 
gral over the boundary contour r that encloses R. The 
quantity d/dn denotes an outward normal derivative. In 
the above equation, if G is chosen to satisfy 

V;G(K, r, r0) + I^KC(K. r, r0) =  -6(\r - f0\) 

n: 
then (6) reduces to 

*(r) = G(K, r, r0 

d*(r0) 
dn 

- *(fQ) 
dGJK. r, r0) 

dn 
dl (8) 

where ?eÄ, excluding c while r0 e c. 
Solutions of (7) are Bessel functions. For a finite do- 

main, any combination C0 Jn — { Yn can be used (note that 
Jn is a solution of (7) only when r * r0). The coefficient 
of Yn is determined to be - 1 /4 from the singularity con- 
dition at r = ?0. For an infinite domain, C0 must equal 
—j/4 because only the second-order Hankel function 
-j\H{

n
2) = -j\(Jn ~ jYn) satisfies the proper radiation 

conditions (outward traveling waves, vanishing at infin- 
ity). Analytically, the results should be independent of 
C0, but since the computations are done numerically, a 
slight effect on the convergence rate of the results has been 
noticed. Since we found no consistent way of optimizing 
tne value of C0, unless stated otherwise, the zeroth-order 
second-kind Bessel function [28] shall be used through- 
out, i.e., 

G(K. r, r0) =  — i>o(^o^ j ^ ~ ?o|)- (9) 

In the limit of r approaching the boundary, (7) becomes 
[20] 

d*(?0) 

(10) 
5*(?)«-f G(K, r, r0) 

~ *(r0) 

dn 

dG(*. ?. r,-)) 

dn 
dl 

where r, ?0 e c and \c dl denotes the principal value line 
integral with the contribution of the singularity already 
accounted for. 

III. BOUNDARY ELEMENT METHOD 

To obtain a numerical solution, the integral equation 
(10) is discretized to a finite size matrix equation. The 
relation between ^ and d^ /dn for each region is inde- 
pendent of the other, and thus the equations are treated 
separately. Following [20], we can write (10) as 

\u, =  £ qjQ.j -  2 «,»„ 11 

where 

3G(K. f,. 7,) 
2D, -L 
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and Uj and qt are the field amplitude and flux, assumed 
constant over theyth boundary segment. 

Upon placing 3Q — 2) + {$ where 5 is the unit matrix, 
<I1) becomes 

3CRUR — S/f<?/? (12) 

which, for every region R( =RA, RB), relates the value of 
u at the midnode i\ with the values of u and du/dn at 
every other nodej, including; = /". 

All the line integrals along the elements c,; j * i can 
be calculated numerically using a four-point quadrature 
rule [27]. For they = i case, the integration path Cj = c, 
contains the "source point" r, = (JC,, ZJ) and a logarith- 
mic-type singularity is present. Even though this singu- 
larity is analytically integrable, a logarithmic Gauss quad- 
rature rule has been used again in order to maintain good 
accuracy. 

For each region, (12) represents a set of N homoge- 
neous equations with 2N unknown field and field deriva- 
tives. The necessary extra equations needed are provided 
by imposing continuity across the x = 0 and x = \v2 in- 
terfaces, as well as continuity and periodicity conditions 
across the Region /4-Region B interface. After appropri- 
ate substitution, we end up with a system of 2/»/equations 
in 2N unknowns; the coefficients of the 2/V unknown 
boundary fields and their normal derivatives form the 
complex elements of the matrix JF [15]. Such a homoge- 
neous system of linear equations will have a nontrivial 
solution provided that the determinant of the matrix 5 
vanishes. Since the only unknown in S is 70, the resonant 
solutions, if any, of the determinantal equation will give 
the propagation constants for the structure modes: 

det[7(7o)] = 0. :i3) 

Following the computation for 70, all the unknown 
fields and derivatives can be evaluated under a suitable 
normalization condition. A complex root finder routine 
based on Müller's method has been used for the numerical 
evaluation of the above secular equation. The Floquet 
amplitudes for the field expansion in all the uniform re- 
gions can subsequently be evaluated. 

IV. NUMERICAL RESULTS 

Before proceeding to the numerical results, some fur- 
ther discussion of (13) is necessary. The dispersion rela- 
tion (13) depends on y0 explicitly and also through the 
various transverse propagation constants A„. For the 
waveguide geometry examined here, there exists only one 
fast radiating harmonic (n = -1). Consider the semi- 
infinite air region (x > w2). According to (5), the wave 
propagation constant in the transverse x direction for this 
harmonic will be (we have dropped the subscript that de- 
notes layer 1) 

Al, = -(*o + 7-i) (14) 

which is a double-valued function of 7.,. This means that 
there might exist different solutions corresponding to the 
different branches of (14) chosen. A branch cut is intro- 

duced as in Fig. 2, which maps the /r_i plane onto the 
right plane of A_| that corresponds to "proper" spatial 
hcrmonics or the left plane of /i _, that corresponds to 
"improper" waves. From (3), 

A2., = -(*J + a2 -01,) -jlaß_x.        (15) 

Unlike the first Bragg condition, the vicinity of the sec- 
ond Bragg exhibits many interesting phenomena, as far as 
the character of the modal solutions is concerned. If A has 
a value such that ß0 < K, then, 

thus, 

0_, = & ~ K< 0; 

Im (Al,) > 0 

Re(Al,) < 0 

which puts /r_| in the second quadrant of the hr plane (Fig. 
2). The proper branch solution has A_, lying in the region 
/^(A., 6 ]p) of Fig. 2. Since the wave propagates in the 
x direction as exp ( — /i_,JC), this branch corresponds to 
radiation outwards with an exponential decay at infinity. 
The improper branch, however, would correspond to in- 
coming radiation from infinity. 

On the other hand, if the second Bragg condition is 
crossed, from (15), we get 

Im (Al,) < 0 

Re (Al,) < 0. 

Thus, A2., is in the third quadrant in the A2 plane, which 
puts A_, either in the IVp or IV, sector (Fig. 2). In this 
case, it is the improper branch which has to be chosen for 
outgoing radiation waves. It is clear that waves with 
transverse propagation constants in the IV, sector possess 
a negative real part which results in nonspectral wave so- 
lutions which grow exponentially with x. 

Thus, during the crossing of the second Bragg condi- 
tion, Ai| is allowed to cross the branch cut and A_[ con- 
tinuously shifts from the proper wave plane to the im- 
proper plane. It is noted that even though this is not the 
only possible choice, it is the only one that leads to a 
solution 7o of (12). 

The plots in this section pertain to the structure of Fig. 
1 with *i = 1, n2 = K4 = 3.42, K3 = 3.62, HS = 0.2 /im, 
and w3 = 0.06 /xm. Fig. 3 shows the convergence of the 
real part a and imaginary part ß of the fundamental prop- 
agation constant 70 as a function of the total number of 
elements used to discretize the boundary around each re- 
gion. The operation point has been chosen in the vicinity 
of the second Bragg. The results have been computed 
using the second-kind Bessel function Y0 and the second- 
kind Hankel function Hl

0
2). It is observed that because of 

the numerical solution of the integral wave equation, the 
choice of Green's function affects the computed results. 
As the number of boundary elements increases, the result 
converges to the same answer independently of the choice 
of Green's function. This independence means that the 
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numerical solution behaves as expected from the theoret- 
ical analysis, and thus the discretized matrix equation is 
properly modeling the wave equation in that region. All 
subsequent results have been computed using 11 bound- 
ary elements per side. 

Fig. 4 shows the transverse mode profile at z - 0 as 
calculated from the summation in (2). The summation has 
been truncated to 22 space harmonics (from - 11 to 10). 
Since the radiating -1 harmonic has the least decay in 
the transverse direction as compared to the others, it rep- 
resents the major contributor to the field at distances far 
away from me grating. Near the guiding layer, it is the 
-2 and the 0 harmonic which are predominant. 

The solution of (13) is presented in terms of dispersion 
fc0A versus ßA/tr and attenuation A:0 A versus a A dia- 
grams. The axes have been multiplied by the period A in 
the plots shown. In Fig. 5, the scan in A extends from 
below the first Bragg condition to past the second. The 
triangular slow-wave regions for the air (light hatching) 
and the substrate (heavy hatching) are also shown for ease 
of interpretation [26]. We observe that in this case, ß ap- 
pears to coincide with the unperturbed propagation con- 
stant and runs along the boundary of the substrate trian- 
gle. Just after the intense surface-wave stopband of the 
first Bragg, the wave starts to radiate in the substrate, and 
the substrate beam scans toward its broad side. As soon 
as 3A crosses the air triangle interlace, another beam ap- 
pears in the air space. The attenuation a remains almost 
constant up to the second Bragg where it experiences a 
sudden drop and a subsequent leaky-wave stopband be- 
fore it goes back to normal. 

Fig. 6 examines in extreme magnification the details of 
the first Bragg stopband for two different grating toe h 
heights. Inside the slow wave triangle, all harmonics rep- 
resent bounded waves. Since there is no radiation and 
since the dielectric materials have been assumed lossless, 
a is zero except during the first Bragg interaction where 
70 becomes complex. The increased perturbation caused 
by the thicker w2 = 0.2 /*m grating results in a slight 
increase in bandwidth of the stopband interaction. Fig. 7 
is a plot of the dominant Floquet harmonics, normalized 
with respect to the fundamental, in the vicinity of the first 
Bragg stopband. In the /3A = 7r region, the n = -1 and 
n = 0 harmonics need to have exactly the same amplitude 
in order to satisfy the boundary conditions on the grating 
surface. The same pairing occurs between the n = -2 
and n = 1, and so forth. In a true surface-wave stopband, 
the pairing of all harmonics is complete, resulting in a 
Poynting vector which is identically zero for every x. 

In Fig. 8, a detailed magnification around the second 
Bragg condition is shown. In contrast to the first Bragg, 
the ß\ = 27T condition is satisfied only at a single point 
rather than for a whole region. At this point, or exhibits a 
sharp drop. It seems that a zero in the attenuation coeffi- 
cient is the general behavior for transversely bounded pe- 
riodic structures. The propagation constant ß approaches 
the Bragg condition with a zero slope and then rises again 
in a manner representing a stopband. but with a slope pro- 
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Fig. 6   Magnification of Fig. 5 around the first Bragg resonance for two 
grating tooth heights. 

portional to the amount of perturbation caused by the grat- 
ing. During this transition, a experiences a resonant peak, 
similar to that observed in the vicinity of the first Bragg 
condition. Since in this region the — 1 harmonic is an im- 
proper leaky wave, the corresponding region is referred 
to as a leaky-wave stopband, even though the resem- 
blance is only superficial. 

Fig. 9 is a plot of the magnitude of the predominant 
normalized Floquet harmonics in the guiding layer in the 
vicinity of the second Bragg interaction. The parameters 
for the configuration are those of Fig. 1 with w2 = 0.1 
/im. The n = -2 harmonic momentarily acquires the same 
weight in the field representation as the fundamental, with 
the radiating n = — 1 harmonic dropping three orders of 
magnitude. The power picture in the ßA - 2ir region is 
radically different from the ßA — IT region of Fig. 6. Be- 
cause of the imperfect pairing of the space harmonics (the 
n = -1 does not take part in the coupling), the Poynting 
vector does not vanish identically for every x. Near the 
guiding layer, it is positive because of the contribution of 
the fundamental harmonic; far from the grating, it be- 
comes negative because of the predominance of the n « 
-1 harmonic. The interaction does not result in the clas- 
sic stopband encountered in the first Bragg case. 

V.  MODAL REFLECTIONS OF FINITE-LENGTH GRATING 

STRUCTURES NEAR THE SECOND BRAGG CONDITION 

The interaction of the modes in a uniform waveguide 
without periodic perturbations and the Floquet-Bloch 
modes of a periodic waveguide will be discussed in this 
section. The geometry of the periodic waveguide is shoyxi 
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Fig. 9. Normalized amplitudes of the most important space harmonics 
around the #A = 2T stopband for W, = 0.1 ^m. 

in Fig. 1; the regular waveguide is identical to the peri- 
odic structure, but has no corrugations. As an example, 
the two waveguides are fabricated from a grown Al- 
GaAs-GaAs wafer with a grating formed on a section of 
the wafer. It is assumed that the grating is formed on the 
wafer in the region -L/2 < z < L/2. An incident mode 
V, on the grating produces a reflection ^r and transmis- 
sion 4% as illustrated in Fig. 10. In the periodic region, 
the fields are described by the Floquet-Bloch formalism 
as discussed above. Although a generalized analysis can 
be developed, we will limit our discussion of the problem 
to the immediate vicinity of the second Bragg region. This 
restriction greatly simplifies the problem because the 
modal structures in the periodic and the regular wave- 
guides are similar. Further, the number of dominant spa- 
tial harmonics is a minimum. 

In the periodic region, the fundamental solution for a 
mode propagating in the positive z direction is 

*+ = exp(-7oc) Htn{x)exp{-jnKz).    (16) 
n 

Because the dielectric constant is chosen such that K(X, 

z) = K(X, -C), the backward mode solution is 

*- =exp(+70c)EiU*)exp(+jntf:).    (17) 
n 

It should be noted that the coefficients ',(•*) appear in 
both of the above equations because of tie symmetry of 
the dielectric constant. If this symmetry condition is not 
satisfied, the expansion coefficients in (16) and (17) will 
be different. The real part of y0 is positive so that both 
forward and backward waves will attenuate due to scat- 
tering and radiation losses that occur near the second 
Bragg condition. It should be noted that when the wave- 
guide material is lossless, the dielectric constant K(X, z) 
= K*(X, :). Two other Floquet-Bloch solutions are ^*" 
and V*. These latter solutions represent modes that gain 
power as they propagate; the power being absorbed is due 
to sources located at x - ±oo. 

With a grating region sandwiched (left and right) by the 
regular waveguides, the fundamental mode in the regular 

GRATING 
REGION 

v|/.  »     y* 
W\nAAAnAAArtAAAAAn/\A^ 

*. 

I—L/2 

V 

♦L/2 

Fig. 10. Waveguide configuration used for computation of the reflection 
coefficient of a regular waveguide mode incident on a waveguide with a 
grating of length L. 

waveguide will be launched at z - - « towards the grat- 
ing. This produces the reflected and transmitted fields 
which can be written as 

*i = tuW e*P (A/O exP (-Vife) (18) 

¥r = ptMO exp ( -jbuz) exp ( +JKz)       (19) 

*, = TIMX) exp (j&cz) exp (-jKz) (20) 

where \pu(-x) is tne transverse field solution in the regular 
waveguide, 6L, = K - ßv, ßv is the modal propagation 
constant in the regular waveguide, p is the reflection coef- 
ficient, and r is the field transmission coefficient. 

In the grating, the field is taken as a linear combination 
of the forward and backward waves as ^r = a^ * + bV 
where the coefficients a and b are determined from the 
boundary conditions at the input, and output planes of the 
grating. Near the second Bragg frequency, the spatial har- 
monics n = — 2 and 0 play a major role in transfer of 
power from the regular waveguide to the grating region 
and vice versa. This efficient power transfer occurs be- 
cause the transverse field components i/xr(.t), ^_2(x), and 
^o(x) have almost identical shapes. Thus, in the vicinity 
of the second Bragg resonance, the total grating field can 
be simplified using the dominant terms as 

*r(*, z) = [aM*)ePz + bi.2(x)e-p:]e-'K: 

+ [bM*)e-Pz + a*-2(x)ePzyjKz    (21) 

where P - -a + jd and 5 = K - ß. 
When wave scattering at the interface planes is incon- 

sequential, the traveling waves along the positive ^ direc- 
tion in the grating and in the regular waveguide can be 
equated at the two boundaries. (This condition is also true 
for waves traveling in the negative z direction.) If there is 
no input power to the grating at z - L/2, then the coef- 
ficient of exp ( jKz) in (21) is zero. This leads to the con- 
dition 

- = -7} exp (PL) (22) 

where 77 = < \PV, t/<_2 >/< \f,v, ^0>- (Tne quantity < /. g > 
~ ! / *8 dx is the usual inner product of complex func- 
tions.) Similarly, equating the coefficients of exp ( -jKz) 
and exp {jKz) in (18)-(20) with the corresponding coef- 
ficients in (21) at z - ±L/2 leads to the field reflection 
coefficient 

n[l -exp(2P£)] .. 
P-~ 2   ..._   /^nr i    eXP  (-JOfL). (23) 

1 - rf exp {2PL) 
28 
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The reflection coefficient R ~ \p |2 is now computed in 
the vicinity of the second Bragg condition. The duty cycle 
W/A for the grating is treated as a parameter. Fig. 11 
shows the amplitude of the first three spatial harmonics at 
the bottom the grating (x = 0) as a function of detuning. 
Note that the coefficients for n = -2 harmonic approach 
the normalized value of the n = 0 harmonic in the vicinity 
of the second Bragg. The parameter rj should have a func- 
tional dependence with respect to detuning that is similar 
to the amplitude of the space harmonic amplitude A.2- 
Namely, \rj\ has a peak value at ß = K and decreases 
with detuning. The quantity P - -a + j(K - ß) can be 
obtained from data given in Fig. 12. Near the second 
Bragg resonance, A « 0.24 /xm. It appears from the re- 
sults given in Fig. 12 that the largest duty cycle (0.66) 
produces the "strongest" grating, while the smallest duty 
cycle (C33) produces the "weakest." This phenomenon 
occurs because optical field penetration of the grating re- 
gion increases with duty cycle. 

Fig. 13 shows the reflection coefficient R for the various 
duty cycles as a function of the detuning parameter 6. In 
each of the figures, the grating length L takes on the val- 
ues of 100, 200, and 300 /xm. In Fig. 13(a) where the duty 
cycle is 0.33, the reflection coefficient peaks at a value 
below the second Bragg condition, whereas in Fig. 13(c) 
where the duty cycle is 0.66, R peaks at a point above the 
Bragg frequency. These small local peaks in R occur be- 
cause they reflect the functional dependence of a on de- 
tuning as shown in Fig. 12; for the 33% duty cycle, a has 
a local maximum below the Bragg frequency, whereas for 
the 66% duty cycle, a has a maximum value above the 
Bragg frequency. 

VI. CONCLUSION 

We have used a rigorous full Floquet numerical analy- 
sis to investigate the modal properties and wave interac- 
tions in a transversely bounded dielectric waveguide with 
a rectangular surface corrugation. A specific double-het- 
erostructure GaAs-AIGaAs waveguide geometry has been 
examined in detail. This class of multilayered periodic 
structures c*.n be for n i-ied exactly as a boundary value 
problem. The purpose of such an exact analysis is: 1) to 

/                           Cuty Cycle 

_ 50 5 

66 -. 
Mt 

'»990 1*991 2OC30 2 00C1 2 OO'O 

(b) 

Fig   12. Dispersion about the second Bragg (a) The field attenuation coef- 
ficient and (b) the propagation constant for the different duty cycles. 

establish and understand the basic wave propagation char- 
acteristics, 2) to identify various types of wave interac- 
tions and coupling mechanisms, and 3) to present accurate 
numerical results against which the effect of various ap- 
proximations can be judged. 

The boundary-integral-equation formulation has been 
adopted for the solution of the wave equation inside the 
grating layer. The boundary around each rectangular re- 
gion constituting the unit cell is discretized into elements, 
and a stepwise approximation to the field and flux along 
the region boundary is assumed (boundary element 
method). The tangential field continuity requirements 
across the grating layer interfaces are imposed through 
point matching with the Floquet expansions of the field 
above and below the grating. Other continuity and peri- 
odicity requirements are also imposed in the same way 
across the unit cell interfaces. The dispersion relation is 
thus a generalized transverse resonance-type matrix equa- 
tion. The process of searching for the resonant solutions 
of this equation is equivalent to the process of adjusting 
the weights of the partial waves in the Floquet summation 
as well as the propagation constant in order to satisfy the 
boundary conditions on the grating surface. The results 
thus obtained are inherently accurate, the degree of ac- 
curacy being determined only by the number of boundary 
elements used. 
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Fig. 13. The power reflection coefficient R about the second Bragg for duly 
cycles of (a) 337c» (b) 50%. and (c) 66%. 

Finally, the characteristics of a finite length grating have 
been derived using the Floquet-BIoch solutions of an in- 
finite length waveguide. To simplify the estimates of the 
reflection and transmission coefficients of the finite length 
grating, mode scattering at the interface between the reg- 
ular waveguides and the waveguide with a corrugation was 
neglected. Calculations show that the reflection coeffi- 
cient of a finite length grating does not have a maximum 
ut the second Bragg frequency. Generally, the reflection 
coefficient peaks at frequencies above the second Bragg 
for relatively strong gratings. This phenomenon occurs 

because the model absorption coefficient a peaks above 
the second Bragg condition. Because a. peaks at frequen- 
cies above the second Bragg, the "stopband" occurs just 
above the second Bragg. This phenomenon is to be con- 
trasted with the "stopband1' near the first Bragg region. 
Near the first Bragg condition, the "stopband" is almost 
centered about the Bragg frequency. 
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ABSTRACT 

The design procedures for the construction of corrugated waveguides of AUO3 and the far field radia- 
tion pattern.- observed from such waveguides is presented. Hie design procedure is based on the physics of 
Jour layer waveguide structures. The corrugated waveguide is similar to a Bragg type diffraction grating. 
This corrupted structure provides 90° reflection« at certain specific wavelengths depending on the grating 
spacing. A particular advantage of such structures that behave like grating antennas is thai their radiation 
pattern can be scanned electronically by changing the wavelength (frequency). This corresponds to chang- 
ing the propagation constant of the propagating wave. The far field radiation pattern obtained from the 
experimental set up is compared against simulations carried out using the Huygen • Fresnel theory and a 
close agreement is seen between theoretical prediction and experimental observation. Specifically, the 
design and the measurements are made in the frequency range from 90 GHz to 100 GHz for a number of 
different kinds of structures including those with one as well as multiple sections of corrugations. 

1. IKTRODTJCnON 

Recent advances in the fabrication of millimeter - wave systems using integrated circuit technology 
has stimulated considerable interest in the use of corrugated dielectric structures1"3. A dielectric 
waveguide with a periodic surface corrugation has been shown to hold substantial promise as a leaky wave 
*u:t<.nna for millimeter wave applications. These dielectric antennas offer the advantage of electronic beam 
steering. This class of structures has been widely used for integrated optic applications as be am-to-surf ace- 
wave couplers, distributed feedback reflectors and filters. The physics of wave propagation in optical dev- 
ices can be carried over to the design of these antenna structures and basic optical principles can be used to 
provide information on the radiation patterns of such structures. 

When a wave propagating in a corrugated waveguide reaches the corrugated (perturbed) area, two 
things will occur: a portion of the wave will be diffracted out of the guide, ißto the air and the substrate, 
and a portion  will  be  reflected. This radiation occurs only in  certain preferred directions, primarily 

•Support^ in pin b> the Armj Rtitwch Office. 
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determined by the phase constant of the uncorrugated structure and the period of the corrugations'*. As a 
consequence of the radiation loss, the wave guided by the structure decays exponential;1 as it propagates. 
Hence the wave will exist with appreciable magnitude over a finite length of the waveguide and a beam is 
radiated with a beam width proportions] to the attenuation constant of the guided wave. Since the phase 
and the attenuation constant? determine the field characteristics, they are the most important parameters in 
the phyjics of the operation of these devices. It is possible for the type of structures under consideration 
to estimate the attenuation, reflection and the transmission coefficients of the corrugated waveguide. 

The work presented in this paper pertains to the design of corrugated waveguides of Al:03 with 
dielectric constant of 9.6. in the frequency range from 90 GHz to 100 GHz. A number of such 
waveguide? were designed and constructed including some with multiple sections of corrugations. The radi- 
ation patterns from these waveguides were measured at severaJ different frequencies about the second 
Bragg. The patterns were compared with those obtained from a simulation based on the Huygen • Fresnel 
theory. Close agreement between the two endorses the design procedures used for the waveguide and rea- 
sonable accuracy of the procedures used for measurement of the radiation pattern. 

2. THEORETICAL BACKGROUND 

A periodically corrugated waveguide is shown in Fig. la. (Throughout this paper it is assumed that 
we consider only rectangular teeth, a groove profile that can be made easily and precisely by machining), 
The waveguide antenna structure consists of two parts: one is the uniform waveguide (unperturbed struc- 
ture) and the other is the periodic layer. The width of the structure is 'W, the period of the corrugations 
is 'A' and the height of the corrugated teeth is *T. As an exact electromagnetic boundary value problem, 
periodic dielectric waveguides have been treated for normal incidence (with respect to the direction of the 
grating grooves and with the assumptions that both the antenna structure and the source distribution do 
not depend on the coordinate parallel to the grooves (y-axis). Under these simplifying conditions, a gen- 
eral electromagnetic wave propagating in periodic waveguide can be decomposed into independent TE and 
TM modes. The studies carried out in this case pertain mainly to the TM mode propagation in the 
waveguides. 

2.1. Design of Corrugated Waveguides 

The design of a corrugated waveguide used in this study is based on the theory of four layer 
waveguides'. The algorithm for the design is based on TM mode propagation in the active layer of the 
device. The solution of the wave equation from the Maxwell's equation is sought in each of the four 
regions. The TM modes have only three components Hy, Ex and E,. The continuity of the transverse field 
component. Hy and E, is used to derive the secular equation. 

The solution of the four layer problem in terms of estimation of the propagation constant of the pro- 
pagating wave, depends on the solution of the secular equation. 

2.1.1. Design Procedures 

Using the procedures outlined above, & waveguide structure is designed on which corrugations are 
created in the active layer 3 of the structure. The corrugated waveguide is made of alumina of thickness 
40 mils and dielectric constant of 9.6. Tte design is carried out for & frequencies of operation from 90 
GHz to 100 GHz. The dielectric constant in the Region 3 of interest is dependent on that in Regions 2 &. 
4 and the duty cycle  of the corrugations. The dielectric constant äJ, in the active region  is 

K3 m Dt x «s + (1-D*)*« (l) 

where Dc is the duty cycle. The dielectric constant KS of the region with corrugations, Region 3, is the 
"average value" of the dielectric constant of the corrugated region as shown in Fig. lb. The periodicity of 
the waveguide, dependent on the frequency of operation is related to the duty cycle and the width of the 
corrugations by 
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w - ID, xx (2) 

where   X is the free space wavelength under consideration. 

The corrugations are created using a diamond blade, the blade thickness T, being related to the 
periodicity A by 

T -  A(l -DJ (3) 

Compulation? are made to find the different heights in the corrugations for the different blade thicknesses 
at different duty cycles of the corrugations The blade thickness being a constant in this case, the appropri- 
ate tooth hfighi is chosen After the tooth height is found, the grating period is determined. 

2-1.2- Example 

A Typical example of the design procedure followed in one of the constructed waveguides is given 
for a waveguide designed to operate at 90 GHz. The main criterion was to find the height of the corruga- 
tions and the grating period A given the blade thickness T, which in this case was 0.6 mm A computer 
program, the algorithm of which is based on solving the secular equation was used to earn out the design. 
The wavelength of the propagating wave inside the corrugated waveguide is 

v« - £ <«> 
where X is the vavelength of the the wave, ntf is the effective refractive index in the waveguide which is a 
value generated in one of the subroutines of the program An example is the design of a waveguide for 
operation at 00 GHz Assuming that a strong grating of height 0.3 mm is desired, the blade thickness being 
O.G mm from Fig 2a, the duty cycle is found to be 0.55. Once the duty cycle is known, from Fig 2b, the 
grating period for the tooth height of 0.3 mm and given a duty cycle of 0.55 is found to be 1.325 mm. 
Hence the design specifications for an alumina waveguide of thickness 40 mils and dielectric constant of 
9 6. for propagating TNI modes at 90 GHZ are that the tooth height be 0.3 mm and the grating period be 
).325 mm The performance of the waveguide in this example was in close agreement to theoretical pred- 
ictions. 

2.2. Brie/Analysis of Waveguides Prepared 

A brief description of various waveguides prepared and their performance is listed below, A com- 
parison was made of the experimental performance of the waveguides against theoretical expectation. It 
was based on the calculation of the actual wavelength of the wave inside the waveguide as a function of 
frequency. Two theoretical simulations were made using two principles: l) The Effective Index Method6 

and 2) The Slab Waveguide Method for a four or five layer structure. Experimentally, the relation between 
the peak radiation angle 6 and the actual wavelength of the wave inside the corrugated waveguide is given 

to". 

X  .  A&jSt+i) (5) 

where 

A » period of the corrugations 

6 * peak radiation angle 

X0 « free space wavelength 

Fig 3a gives the comparison of the wavelength against frequency for a waveguide with depth of cor- 
rugations T of 0.28 mm and grating »pacing of 1.33 mm. In the figure, SLAB corresponds to simulated 
results using the four or five layer slab waveguide approach, EIM corresponds to the simulated values 
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using the Effective Index Method. EXP F corresponds to the experimental results from the flat side of the 
waveguide and EXP C is the experimental observation from the corrugated side of the waveguide The 
results sho« a close agreement between the various simulations and experimenta] results. Fig 3b 
correspond« to the cafe of a waveguide with corrugations depth 0.45 mm and grating spacing of 1 225 mm. • 

2.3. Measurement of Radiation Pattern 

The experimental set-up used to measure the radiation pattern of the waveguides is shown in Fig 4. 
The various components of the set up are: 

Si Frequency tunable IMPATT diode oscillator( 90 - 100 GHi ) 

Ml Ferrite modulator, used to chop the incident wave for the purpose of lock-in amplifier 
measurement. 

F*Ml Precision frequency meter. 

A1.A2 Variable attenuator 

DCl 3 dB directional coupler. 

PHl Rotary type pha5e shifter 

SW1.SW2 Manual waveguide switches 

Tl,TC,T3,T-l      Matched terminations 

D1 Flat broadband detector with horn antenna set up in z-polarization 

CDW Corrugated waveguide under obsenation 

The electromagnetic wave propagating along an axially periodic waveguide structure can be expressed 
in terms of an infinite number of traveling waves of the form» n,(x)e * called the spatial harmonics. The 
field is given by 

Hy«2>.(x)e"7> (6) 
m-ith 

wbere 

o    is the attenuation coefficient 

ß0   b the propagation constant 

A    is the period of the corrugations 

0Q can be found approximately by using the average dielectric constant and solving the slab waveguide 
problem7. 

The field described above is one of the two self consistent solutions for the slab waveguide The first 
of the solutions is the IM modes consisting of the component« E„ H,,and E, while the second is the TE 
nodes consisting of the components Ey, H,, and H, The width of the corrugated waveguide is taken to be 
larger than the supported wavelength in which case it can be treated as a slab waveguide. The TM modes 
of the slab dielectric waveguide match the TCQJ in the metallic waveguide best, lust one mode being sup- 
ported by the metallic waveguide is due to the small dimensions of the metallic waveguide( 1.25mm x 
2.50mm). The cut off frequency of the TEQJ dominant mode is 60 GHz and the next mode TE10 is cut off 
at 120 GHz 

In the experiment, the source oscillator is operated in the frequency range 90 GHz to 100 GHz As 
teen from the above equations, given a source oscillator upto 100 GHz, the metallic waveguide can only 
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support the TEt; mod« 

2.3.1. Far Field Radiation PatLera 

Thf far field pattern of lb« radiation from the corrugation* can be found using the Huygen • Fresnel 
formulae . The magnetic field amplitude at a point (R, 6) a« shown in Fig 5  is given by 

F(R.e)   o   jwcth^Jit)!S£sAit (7) 

=rcose /Hy(2)exp;jke(-tsine 4 jg-Y.to (8) 

Radiation is produced by the n = -1 Floquet-Bioch partial wave. 

F_i(R, 0)    o    /txp;-ori>xp>j(5c+-^-)2>xp,
ijko(-"ii>© + "JE")^2 W 

The magnetic component of this field is polarized in the y-direction while the electric field is polarized in 
the x-direcuon 

8. RESULTS 

As mentioned, Fjgs 2a and 2b give the results on the waveguide design. Fig 6 shows t comparison 
between the experimentally observed radiation pattern (doUed curves) and the simulated results (solid 
curves). The figure shows that the ratio of spread in the beam to the corresponding frequency »can in the 
source is. 

Experimental.   «~-«2.0°/CHi 

AB 
Simulated:    -=f-1.9°/GHz 

hi 

The simulation cunt shows a shift of +4°. The reason for this could be that the actual value of $c is 
smaller than the calculated value which uses the slab waveguide theory. Figs. 7a and 7b show results 
obtained from experimental and simulation of the radiation patterns from a blazed structure. The results 
yield 

Experimental:    -— «1.8e/GH2 

Simulated:    -^--2.0e/GHz 
AT 

The same reasons as the earlier could be attributed to the difference in the values Fig. 8 show« results 
from the experimental set-up by combining two maves made incident from either end of the waveguide 
and tuning a phase shifter to get a maximum or minimum. The 'flips' correspond to the ease of the radia- 
tion measurement from the non corrugated side (flat slab side). 

Fig 9 depicts a situation «here waves art made to be incident from both ends of the waveguide and 
the phase shifter is adjusted to get a maximum (max) or a minimum (min). 'Forward' corresponds to a 
ease when waves are incident only from the forward direction of the waveguide and a measurement of the 
radiation pattern is made. The waves are made incident from the reverse direction to get the radiation pat- 
tern labeled 'reverse'. 

Experimental studies were made on eorrugated waveguides consisting of two sections on the same 
slab These were designed and constructed to measure the reflection, transmission and attenuation 
coefficient* of the eorrugated waveguides Fig JOa and 10b show the radiation pattern from the two sec* 
tions 'A' and 'B' of the waveguide for different frequencies . These can be used to find the attenuation and 
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transmission coefficients For example, a calculation of the transmission and attenuation coefficients using 
the relation. 

P  -   Po«^1 (10) 

where P0 is the incident power while P is the power at some point along the waveguide. Use of this rela- 
tion and the use of the values from the curves yields a transmission given by P/P0 of 0 78 and a attenua- 
tion constant of 0 079 cm for the waveguide under consideration. 

Studies are carried out on a two section waveguide by tuning the source oscillator to the second Bragg 
frequency of the average Bragg frequency of each of the sections. The attenuator is adjusted to get equal 
peak intensities from both sections. The experimental pattern observed with such an arrangement along 
with a comparison of simulation of the conditions is shown in Fig. 11. 

It is noticed that the curves are not perfectly smooth which could be attributed to the fact that there 
is interference with other sources of radiation such waveguides as leaky wave antennas or. as surface emit-- 
ting structures ;^. the frequencies from 90 GHz to 100 GHz. The study brings out the practical use of the 
physics of the lour layer problem and the Huygen's principle in the fear field measurements. Transmission 
and reflection coefficients of different kinds of waveguide structures have been found. The effect of 
losses and detuning from Bragg condition has been brought out. The peak reflectivity in some cases does 
not occur at the Bragg condition. These effects could be due to complicated interactions of the guided 
modes, radiation fields and evanescent waves. 
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Four layer waveguide structure 
wjih associated coordinate sys- 
tem. Region *S' is the active 
region of interest. 

Fis lb Dielectric constants in a four 
Uyer waveguide structure, «j 
is the average vaJue of the 
dielectric constant of the cor- 
rugated region. 
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TOOTO HEIGHT (mm) 

Fig.2a. The waveguide design is cased 
on the physics of four-Uyer 
structures. The tooth height is 
plotted against blade thickness 
for various possibe duty cycles. 
The blade thickness in this 
ease is 0.6 mm. 

TOOTH HEIGHT (mm) 
Fig2b. The waveguide design includes 

finuing the corrugation spacing 
by plotting it as a function of 
tooth height for various duty 
cycles 
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Fig3a- The accuracy of experimental results is esta- 
blished by finding the effective wavelength in 
the waveguide as a function of frequency. The 
waveguide in this case has a tooth height of 
0.28 mm. 

•* ti *       9$ m tr m •# 
nCtHJtttCrfCMl) , # 

Fig:3b.   The result« shown in Fig. 3a are repeated for a 
wavruid? with tooth heicht of 045 mm. 
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Fig*.     Experiment*! »etrup to measure ehe far 6«1<* 
radiation pattern of corrugated waveguides. 

Fig:5. Co-oKÜnate system to find the 
Magnetic Field amplitude at a 
point (R,6) using Huygen- 
Fresnel Equation. 

FigrC. Experimental (dotwd) and simulated (solid) 
radiation paUernt from a waveguide wiüb grau 
ing spacing of 1.S3C mm. 
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Fig'a. Experimental results of the radiation pattern 
from i blaied waveguide structure for various 
frequencies. 

nuT4*arr»cc; 

Fig 7b. Radiation pattern from a simulation of the 
blazed structure considered in Fig 7a. Results 
show close agreement with experimental 
results of Fig. 7a 
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Waves are made incident from each of the two 
ends of the waveguide and a phase shifter is 
adjusted to get a maximum or minimum. The 
waveguide is flipped ('flip') to study the effect 
*»t>ro the flat side of the waveguide. 

Fig 9      Simulated results of radiation pattern from a 
ease  of two  sided incidence  of waves. The 
phase shifter is adjusted to get a 'max»* 
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Fif:10a» Radiation pattern from one of 
the two lections 'A' of a two 
section waveguide. 

Fif:10b. Radiation pattern from section 
*B* of a two section waveguide. 
The results from sections 'A' 
and D" are used to find the 
reflection, transmisstop and 
attenuation coefficients. 

flftll. Experiments) and simulated radiation 
patterns from a two section wsvejuide 
for a source frequency whose value is 
the averse« of the-second Brsfx fre- 
quencies of saeh section. 
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ABSTRACT 

In this experimental study we investigate the guided mode-radiation mode coupling of 
periodic dielectric waveguides. The dispersion relation and the attenuation constant along the 
dielectric waveguide were measured around the second Bragg frequency. The far field radiation 
pattern was also measured. Floquet theorem was applied to solve wave equations. Zero order 
approximation was used in the design of waveguides. For surface emitting structures used in 
surface emitting lasers and couplers, the most important parameter is the dispersion relation 
and attenuation constant along the corrugated waveguide around the second Bragg frequency. 
The dispersion and attenuation measurement shows that the attenuation constant minimum 
occurs at the second Bragg frequency. This corresponds to the maximum Q point of the corru- 
gated waveguide. Two side incidence shows that in the out of phase condition the radiation 
power is minimum at the second Bragg frequency and have two lobes. 

1. INTRODUCTION 

Integrated circuit technology played a significant role in the fabrication of optical 
waveguides in recent days which simulated considerable interest in the use of corrugated dielec- 
tric strictures. A dielectric waveguide with a periodic surface corrugation has been shown to 
hold substantial promise as a leaky wave antenna for millimeter wave applications. This class of 
structures has been widely used for integrated optic applications. The physics of wave propaga- 
tion in optical devices can be carried over to the design of these antenna structures and basic 
optical principles can be used to provide information on the radiation pattern of such structure. 

When a wave propagating in a corrugated waveguidde reaches the corrugated area , two 
things will occur: a portion of the wave will be diffracted out of the guide, into the air and the 
substrate, and a portion will be reflected. This radiation occurs only in certain preferred direc- 
tions, primarily determined by the phase constant of the corrugated structure and the period of 
the corrugation. As a consequence of the radiation loss, the wave guided by the structure decays 
exponentially as it propagates. Hence the wave will exist with appreciable magnitude over a 
finite length of the waveguide and a beam is radiated with beam width proportional to the 
attenuation constant of the guided wave. Since the phase and attenuation constants determine 

* Support, d in part by the Army Research Office. 
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the field characteristics, they are the most important parameters in the physics of the operation 
of these devices. 

This paper deals with the design of corrugated waveguides of Al^O^ with e = 9.6 in the 
frequency range around the second Bragg condition. The attenuation constant, the dispersion 
reattion and the radiation pattern were measured around the second Bragg frequency. The pat- 
terns were compared with those obtained from a Huygens-Fresnel principle* The understanding 
of the wave propagation along the corrugated waveguide helps in the design of surface emitting 
lasers and couplers. 

2. THEORITICAL BACKGROUND 

The near field distribution for the frequency around the second Bragg coupling is [l]-[5]: 

H,-CtxP{-az-Hß-k)z) (1) 

Where IIV = y component of the magnetic field of the TM mode, a — attenuation constant, ß 

—propagation constant,/: =2—, here A is the period of the corrugated waveguide. By using the 

Huygens-Fresnel principle [6] the field distribution at point (R,#) is approximated as 

F(fiIfl)a;exp(-M)exp(-i(/?-fc)*)exp(yfce(^siDtf+^))^ (2) 

where l\ is the distance from the waveguide to the receiver, 9 = receiving angle of the 
detector,£0_2-r-, X being the free space wavelength, and a,b represents the upper and lower lim- 

its of the corrugation. From (2) the absolute value of F(R,#) occurs at #max and can be found 
approximately by setting ß—fc-f£osin0max = 0 

/?A=2(l-(fc,Asin0ffloi)) (3) 

and 0max was measured by — (#i/2,ß+#i/2,L) where 0l/2R and 81/2,1, are half power points on 

either side of the central peak of the radiation. The dispersion relation ß— versus k0 A is plot- 
7T 

ted using (3). 

2.1 Attenuation constant 

The power radiated from the corrugated waveguide of length L is designated by PL and is 
proportional to 1—eap(—2aL). By covering half of the far end corrugation the power radiated 
from the waveguide {Pi 12) was measured which is proportional to 1—exp(—ah). By measuring 
the ratio of Pi and PL M for different frequencies, the attenuation constant can be obtained by 
using the relation 

*-~-ln(A--l) (4) 

3. EXPERIMENTAL SETUP 

The detailed experimental setup is shown in Figure 1. The functional blocks of the setup 
are as follows. 
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S: Tuna Me IMP ATT oscillator. 

Mi Ferrite modulator: Used to chop the incident wave for the purpose of lock-in amplifier meas- 
urement. 

FM: Precision frequency meter. 

Al, A2, A3: (Variable attenuators): Al is used to regulate the mm-wave power entering the sys- 
tem. A2 and A3 are used to regulate the power incident on either side of the dielectric 
waveguide* 

DCl, DC2, DC3: (Directional couplers): DCl is a 3 dB coupler used to divide the power into the 
two branches of the experimental setup. DC2 and DC3 are 10 dB couplers used to monitor the 
incident power level. 

SWl, SW2: (Manual waveguide swithces): In the "open" position all the power is dissipated in a 
matched terminator. 

PH: (Rct.ary-vane phase shifter): This is used to control the phase relationship between the two 
incident waves, 

Dlj D2, D3: (Flat broadband detectors): Dl and D2 are used to monitor the incident power and 
D3 is u?ed to detect the far-field radiation. Lock-in amplifiers are used to amplify the signal 
from tl •: detector. The output from the lock-in amplifier is directed to personal computer 
through the HP-IB. 

MA: Motor assembly and linear potentiometer are used to rotate D3 and to measure the angle 
with the help of a computer. 

CW: Corrugated dielectric waveguide under test. The physical structure of the waveguide is 
shown in Figure 2. (Shown four teeth only). 

AS: Millimeter wave absorber used for attenuation constant measurement. 

3.1 Waveguide specifications 

Th: waveguides used are made of Al203 having e = 9.6. The dimensions of the two 
waveguides are as follows, waveguide #1: Period A = 1.333 mm, teeth width, tw = .6 mm, 
teeth height, th =.18 mm, number of teeth = 31, thickness t = 1.01 mm waveguide #2: 
Period A = 1.333 mm, teeth width, tw = .6 mm, teeth height, th = .2 mm, number of teeth 
= 32, thickness t =1.01 mm 

4, EXPERIMENTAL RESULTS 

For corrugated waveguide #1, the calculated second Bragg frequency usin Zero order 
approximation and effective index method is 89.0 GHz, i.e, k0 A = 2.485. The experimental 
minimum of attenuation occurs at k0 A = 2.538 which corresponds to a frequency of 90.9 GHz, 

and ß— = 2.03 ( ß— = 2.00 is the second Bragg condition). This result is shown in Figures 3 
IT 7T 

and 4. 
For corrugated waveguide #2, the calculated second Bragg frequency is 89.4 GHz, i.e, k0 A 

= 2.496. The experimental minimum of attenuation occurs at   k0 A = 2.558 which corresponds 
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to a frequency of 91.6 GHz, and ß— = 2.00. This result is shown in Figures 11 and 12. The 
7T 

second Bragg frequency is about 2% higher than the calculated value. 
The experimental far field radiation pattern is very close to the calculated radiation pat- 

tern based on Huygens-Fresnel principle. The attenuation constant used in the calculation is a 
= .2/cm, and the corresponding value of the attenuation aA = .026. For two side incidence it 
simulates the operation of a surface emitting laser at second Bragg frequency. By changing the 
phase shift between the two incident waves the output power can be changed from maximum to 
minimum. These two cases corresponds to in-phase and out of phase conditions of the two 
incident waves respectively. The maximum Q is obtained at the point where the radiation is 
minimum .This happens at the out of phase condition of the two incident waves. The radiation 
appears in two lobes as shown in Figure 7. The calculated normalized radiation pattern at the 
out of phase condition is shown in Figure 9. 
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Figure 2: Structure of the corrugated dielrctrie waveguide made of 
y4/aO, and « = 0.6 (shown 4 tcelh only). 
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A Boundary Element Technique Applied to the 
Analysis of Waveguides with Periodic Surface 

Corrugations 
Jerome K. Butler, Fi'low, IEEE. Warren E. Ferguson, Jr., Gary A. Evans, Fellow, IEEE, 

P. J. Stabile, Senior Member, IEEE and Aryc Rosen, Fellow, IEEE 

Abstract—Boundary integral formulation is used to charac- 
terize Floquet-Bloch modes of two-dimensional multilayered 
periodic waveguides. A new technique is described for match- 
ing fields inside the grating to those external to the grating re- 
gion. Although a simple four layer structure is used to illustrate 
the method an extension to multilayer waveguide structures is 
straightforward. The mathematical formalism has been sim- 
plified, allowing for more efficient computations using fast Fou- 
rier transform algorithms. 

I.   INTRODI'CIION 

PERIODIC structures designed to interact with propa- 
gating waves have been of interest for almost seven 

decades. Recent advances in semiconductor devices and 
processing technology has led to the employment of pe- 
riodic structures in distributed feedback lasers |1], (2), in 
superlattices |3J. and in millimeter-wave [4| and optical 
surface emitting (5| sources. 

Numerical solution of many two dimensional problems 
can be reduced to one-dimensional problems through the 
use of Green's theorem. One popular method that uses 
this technique is called the boundary element method 
(BEM). Early applications of the BEM for the solution of 
static fields as well as for wave propagation problems were 
discussed by Brebbia [6|, (7J. Application of the BEM to 
related electromagnetic field problems has received more 
recent attention |S]-|11) Characterizing periodic wave- 
guides has been accomplished by various methods. Ap- 
plication of the numerical boundary element method is 
relatively new; it was first applied to periodic millimcler- 
wave structures | I2j-| I4JT and to optical waveguides used 
for surface emitting lasers [15). Although BEM can be 
used on general types of periodic structures, it is partic- 
ularly useful in the analysis of optically induced periodic 
structures. In these structures optical energy is used to 
excite electron-hole pairs, periodically, in a dielectric 
waveguide   fabricated   from  a  semiconductor  material. 
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Structures with a uniform distribution of light energy, such 
as a dielectric waveguide fabricated from gallium arse- 
nide-aluminum gallium arsenide or thin silicon on sap- 
phire (SOS), have been analyzed [16). However, in the 
case of an all silicon guide, the distribution o( the ab- 
sorbed optical energy (hence electron-hole pair density), 
as measured from the surface of the waveguide, varies 
with depth |I7J. Since this also results in a variation of 
the complex permilivity, it is best analyzed as a large 
number of layers each with a distinct complex permittiv- 
ity. 

This paper presents theoretical details which underlie 
the numerical application of the boundary element method 
(BEM) to the analysis of periodic dielectric waveguide 
structures. While this theoretical analysis supports gen- 
eral representations of the solution on the boundary of the 
grating, particular attention has been paid to the represen- 
tation obtained by linear combinations of pieccwise con- 
stant functions. Although the theoretical development is 
applicable to structures with multiple layers on cither side 
of the corrugation region, the method is applied here to a 
simple four layer dielectric structure with rectangular cor- 
rugations" The top layer is air while the bottom layer is 
assumed to be a semi-infinite dielectric material. The 
grating lies between the air and central dielectric layer. 

In the representation of the solution in regions above 
and below the grating the fields are represented by dis- 
crete Fourier scries along the grating interfaces. In the 
event that a large number of boundary elements are re- 
quired, fast Fourier transform techniques (FFT) can be 
employed to speed the computations. 

II. PROBLEM FORMULATION 

Consider the dielectric waveguide geometry with a 
grating as shown in Fig. 1. The dielectric substrate and 
air superstate regions are assumed to be half spaces. The 
grating consists of the periodic juxtaposition of homoge- 
neous rectangular Region A (dielectric constant *3) and 
Region B (dielectric constant K{). The (.r, z) region (-00, 
00) x (0, A) is called the unit cell. 

A lime harmonic transverse electric (TE) wave is as- 
sumed to propagate in the axial c direction as cxp (jut - 
^z). For the sake of simplicity it is assumed thai the field 

oniK yiy7/q:$(n 00 i<   \<wi IFF.H 
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Fig. 1. The basic diclcctnc waveguide structure. 

is invariant with respect to y. The complex propagation 
constant is 7 = a + jß. Although electric field polariza- 
tion along the y direction is assumed, it is straightforward 
to extend the analysis to other polarizations. Polarization 
along >• corresponds to the TE case where it is assumed 
that Ey - ¥. 

The core problem that must be solved is a characteris- 
tic-value problem in the grating region. This characteris- 
tic-value problem involves determining the value of the 
Floquet multiplier 7 so that the wave function ^ is a so- 
lution of the differential equation 

V2* + *§K<JC, 0* =0. (1) 

Here k0 = 2ir/\ is the free-space wavenumber and K(X, 

y) is the point dependent relative dielectric constant. The 
two dimensional wave function V (x, z) is required to sat- 
isfy the periodic condition 

¥(x, z + A) = ¥(JC, :) exp (-7A). (2) 

Frequently, it is convenient to write the wave function in 
terms of an "amplitude'* modulation function $(,*, z) as 

¥(*, z) = *(.t, z)exp(-7z) (3) 

where 4>(x, Z) = $(x, z + A) is a periodic function with 
period A. 

The solution of the differential equation (1) is some- 
what simplified by the fact that the unit cell is stratified 
into layers. In all layers where the dielectric constant is 
independent of z, i.e., the nongrated regions, the solution 
of the differential equation can be written in closed form. 

The solution in layer 2 provides most of the interesting 
features of the present problem. In specific areas of the 
grating regions. Region A or Region B, the dielectric ma- 
terials are homogeneous. The corresponding fields of each 
region satisfies the two-dimensional scalar Helmholtz 
equation: 

a2*    a2* 
-TT + TT + kit* - 0. 
ox dz 

(4) 

The solution for ^ in these regions is determined by a 
boundary integral formulation. The resulting characteris- 
tic value problem is obtained by appropriately matching 
the fields in the grating to those analytical forms above 
and below the grating. 

III. FIELD SOLUTIONS OUTSIDE GRATING 

First, to properly formulate the problem, the wave so- 
lutions above and below the grating are derived. In the 
uniform layers above and below the grating, the field 
expressions have to appear in the Floquet-Bloch form in 
order to satisfy the boundary conditions on the grating 
surface. In the j'th layer the solution becomes: 

*,(*, z) = cxp (-72)    2   6„(x) exp (-jnKz).    (5) 
fi* -00 

Here K - 2*/\ is the grating wavenumber. Outside layer 
2 as shown in Fig. 1, the spatial harmonics \ptn are uncou- 
pled and satisfy the equation 

^T + 1*0*1? + ylWn - 0 (6) 

where yn = 7 + jnK. In the semi-infinite layers 1 and 4, 
the solutions become 

and 

$ln{x) = ^,„(JC,) exp [&,„(*, - x)] (7) 

**.(*) = M*i) exp [M* " *3)] (8) 

where the transverse wavenumbers h,„ = ±(fcö*i + 
72),//2. The sign of the radical is always chosen such that 
analyticity is maintained in the vicinity of the second 
Bragg condition [18]. In the layer adjacent to the grating, 
the solution becomes 

hnW  "  hn(X$) COS [hln{x ~ X})] 

+ Mn(x3) sin [hln(x - x3)]/h3n       (9) 

where $ ' = dip/dx. It should be noted that the functional 
dependence of ^3n(:c) and its derivative are written in 
terms of their initial values at x = x?. In view of the above 
condition it is convenient to represent tin(x) and ^'in(x) in 
terms of the vector 

liM*)> = u;„w 
(10) 

Because Ey and its derivative are continuous across the 
boundaries, it follows that the individual space harmonics 
and their derivatives are continuous across each interface, 
i.e., hAX}) = \M*3) and ^5,,(x3) = ^„(xj). This im- 
plies the state vectors are continuous across the bounda- 
ries. 

While the second order differential equation (6) has two 
solutions in the interior layer 3, application of the bound- 
ary conditions imposed at JC = ±00 allows only one so- 
lution in layers 1 and 4. Accordingly, there is only one 
unknown coefficient in the field solutions in those layers. 
In total there are only two unknown coefficients, those 
due to the solutions on either side of the grating region. 
By judiciously transforming the spatial harmonic solu- 
tions in the outside regions to the grating, the partial waves 
at the boundary of the grating can be expressed in terms 
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T3„ = (12) 

of a single constant. In terms of the transverse wavenum- 
ber and layer thickness, 

I'M*:)) = T3.l1k.U3)> (H) 

where the vector | ^3*(-*:)> = col (fan(x2), ^„(Jf:)) rep- 
resents the field and derivative at .r = x2 and | \}/in (.r3) > = 
^4/1(JC4) col (1. h4n) represents the field and derivative at 
x « JC3. Therefore, the transformation matrix T3„ is 

cos (hin >v3)        sin (hin w3) /hin' 

_ -h3n sin (h2n w3)   cos (/i3n w3) 

where w3 is the thickness of the intermediate layer as 
shown in Fig. 1. 

The process of formulating "closed-form" solutions for 
the individual spatial harmonics outside the grating region 
is possible because the harmonics are not directly cou- 
pled. Overall coupling of the space harmonics arises from 
the interaction of the harmonics in the grating region. The 
desired Floquet multiplier that renders the proper Flo- 
quet-Bloch mode is determined from the characteristic 
equation obtained by matching the field solutions outside 
the grating region to those inside the grating. This process 
of producing the secular equation is common to all meth- 
ods used to determine the characteristic modes of periodic 
structures. The method used in this paper is called the 
boundary element formulation and is described below. 

IV. BOUNDARY INTEGRAL FORM 

The field solution inside the grating is now addressed. 
In the grating layer the coefficients \pn are all coupled to- 
gether. It is convenient to avoid the laborious exact so- 
lution for the field everywhere inside the grating and seek 
a relation between ^ and its normal derivative only along 
the boundary enclosing the homogeneous regions A or B. 
Towards this goal, we convert (4) into an integral equa- 
tion. Results based on the numerical solution of integral 
equations have the advantage of being accurate even if the 
boundary conditions are only approximately met. In par- 
ticular, for the problem at hand, the field and flux will be 
assumed piecewise constant and so a collocation (point 
matching) technique will be used to impose field conti- 
nuity and periodicity. 

According to [6], through the use of Green's second 
identity, (4) becomes: 

\\ [G(K, r, ?')V;*(r) - *(r)Vf
:G(K, r, ?')] ds 

£(*, r, r') 
dn 

- *(?) ^ ; —- 
dn 

dl. 

(13 

The left-hand side is a surface integral over the transverse 
plane Region R and the right-hand side is a closed line 
integral over the boundary contour c that encloses R. The 
quantity d/Bn denotes the outward normal derivative. 

When G in the above equation is chosen to satisfy: 

V*G(K, r, ?') + *0KG(K, r, ?') = -6(\r - ?'\)    (14) 

then (13) reduces to: 

*(?) = GiK,fff')-~ 
dn 

- *Cr') 
dGJK.r, f') 

dn 
dl (15) 

where r e R> whereas fee. (Specifically, region R is 
region A or B of Fig. 1.) 

Solutions of (14) in two-dimensional space can be ex- 
pressed in terms of Bessel functions. Fora finite domain, 
any combination C0Jn - (1/4) Yn can be used (note that 
Jn is a solution of (14) only when ?*?'). The coefficient 
of Yn is determined to be -1 /4 from the singularity con- 
dition at r - ?'. For an infinite domain C0 must equal 
—y/4 because only the second order Hankel function 
-;(l/4)//?> = -7(l/4)(7fl - jYn) satisfies the proper 
radiation condition (outward traveling waves vanishing at 
infinity). Analytically the results should be independent 
of C0, but because the computations are done numeri- 
cally, other choices of Q seem to produce less accurate 
results. In particular, when C0 = 0 the convergence rate 
is rather slow when the thickness of the grating layer ap- 
proaches zero. With C0 =£ 0 the boundary integral ap- 
proach used here automatically includes those conditions, 
previously proposed [10], that employ no singular func- 
tions. Since we found no consistent way of optimizing the 
value of C0, the zero order Hankel function, unless oth- 
erwise stated, shall be used throughout, i.e., 

G{K, ?,?') = -j\HS\kQfK\r-r'\).        (16) 

In the limit when r approaches the boundary, (15) be- 
comes [6]: 

i*(?) -i G(K, r, ?') 
d*(r') 

- *(?') 

dn 

On 
dl (17) 

where r.r'ee and -fc dl denotes the principal value line 
integral with the contribution of the singularity already 
accounted for. 

V. BOUNDARY ELEMENT METHOD 

The integral equation (17) is discretized to a finite size 
matrix equation to obtain a numerical solution. The rela- 
tion between ^ and 3¥ /dn for each region is independent 
of each other and so the equations are treated separately. 
The contours bounding regions A and B are partitioned as 
illustrated in Fig. 1. Along the bottom and top boundaries 
the partition length is A = h/(NA

a + A'f) while the sides 
have A = w'2/A^, where w2 is the thickness of the grating 
layer as shown in 1. Note that the element lengths along 
the top and bottom of the unit cell are id ..tical. Following 
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[6], we can write (17) as: 
N N 

y-J ;-I 
(18) 

where 

C(ic, r„ r,) dl 

dl 

and Uj and <7; are the field amplitude and flux, assumed 
constant over they'th boundary segment. 

Upon placing JC = 2) + 1/25, where 0 is the unit 
matrix, (18) becomes: 

JC V = £"g R„R (19) 

which, for every region R(= A. B), relates the value of u 
at the midnode i, with the values of u and du/dn at every 
other node j% including; = i". 

All line integrals along the elements c}: j * i\ can be 
calculated numerically using a 4-point quadrature rule 
[19], or using ADAPT as discussed in the Appendix. 
When j = i, the integration path c} = c,, contains the 
"source point" 7, = (JC„ z,) and a logarithmic type sin- 
gularity is present. Even though this singularity is analyt- 
ically integrable, a logarithmic Gauss quadrature rule has 
been used again in order to maintain good accuracy. 

Ordering the elements of £ and D in each of the regions 
proceeds by numbering the elements in a counter clock- 
wise direction starting from the lower left corner. In re- 
gion A, there aTe NA = NA + Ni + NA + NA

d elements, 
whereas region B has NB = NB + A? + /Vf + NB ele- 
ments. (The superscripts identify the two regions.) The 
sides have N$ = NA = Nd = NB. The top and bottom 
elements have NA = NA and NB = NB. To facilitate 
matching the fields in region A to those of region B, and 
the grating fields to the outside layers, the element order- 
ing on sides denoted as having Nc and Nd elements, is 
reversed. This can be accomplished by interchanging ap- 
propriate rows and columns of £ and 2). 

VI. FIELD AND FLUX MATCHING CONDITIONS 

The vectors uR and qR are partitioned as 

«"- 

v«r\ [iT] 

«'- 

Lud U;J 

(20) 

The corresponding matrices 3C* and £R are also parti- 
tioned accordingly. 

For each region, (19) represents a set of NA + NB ho- 
mogeneous equations with NA + NB unknown fields and 
fluxes, or a total of 2{NA + NB). The equations needed 

to determine the solution are provided by imposing con- 
tinuity across the x = 0 and x = w: interfaces, as well as 
continuity and periodicity conditions across the Region 
A-Region B interface. The interface between the lower 
section of the waveguide and the grating regions A and B 
is shown in Fig. 2. 

In the limit as the tooth height becomes small, the 
waveguide looses its periodic nature. The Floquet-Bloch 
modes approach those of a regular dielectric waveguide; 
accordingly the field amplitude tends to a constant value 
with respect to z. Because numerical accuracy of the 
boundary element method using piecewise constant ele- 
ments is improved when the unknown variables are al- 
most constant, it seems appropriate to configure the pres- 
ent problem to one where the unknown variables along a 
boundary are almost constant. To carry this condition into 
the model, the field and flux amplitudes are transformed 
as follows: 

u* =   TR
aV

R
a 

u{ = rj ul 

uR = rRuR 

(21) 

(22) 

(23) 

(24) 

V a * ora 

The corresponding transformations of the flux vectors are 

(25) 

pi = rf [Pj - yU{] (26) 

Pc = r?P? (27) 

Pä = rJ[Pj + yVi). (28) 

The matrix Tf is diagonal (NR x NR) with elements 
TRn = exp {-yzt), where £ = a, b, c, d, refers to the 
different sides of region R. The coordinate position z{ cor- 
responds to the location of the nih element and is given 
by (region A): 

<•/ 

The corresponding zt values in region B are obtained by 
adding the half period A/2. Note that the elements on the 
sides have constant z( values and that the element ordering 
along the top proceeds in a clockwise fashion. 

Boundary conditions between regions A and B consist 
of continuity conditions applied to the field and flux val- 
ues of each of the two regions. Note that the resulting 
equations specify the conditions on the field and flux 
"amplitudes" U and PR as compared to the field and 
flux values uR andpR, originally given in [13]. Field con- 
tinuity gives 

(2/ - 1) A/2, / = 1, •■• .Ni 

A/2, / = 1, -'.Ni 
(2/ - 1) A/2, / = 1, -'.Ni 
0, / = 1, '-.Ni. 

UBä - vl (29) 
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Fig  2. The interlace between the lower waveguide and grating region 
The center position of the /th element is located at ;,. 

while flux continuity yields 

"d   —        rb- 

The periodicity condition specified by (2) requires 

for the fields and 

Ui = Ui 

Pi = ~Pt 

(30) 

(31) 

(32) 

for the fluxes. 
The field and flux values inside the grating must match 

those on the outside layers. Fig. 2 shows the boundary 
points at either the top or the bottom of the grating layer. 
(For the sake of simplicity it is assumed that there are 
even number of boundary points, i.e., N* + N* = ty is 
an even number.) The number of grating points also rep- 
resents the number of spatial harmonics used in the ex- 
pansion (5). The field "amplitude" values at the bottom 
of the grating are represented by the two vectors VA

a and 
Vl so therefore field continuity conditions yield 

.<f>3U;. C,v,)J 

(33) 

The Mux "amplitudes" are represented by the two vectors 
P* and Pj, so flux continuity is satisfied by requiring 

Pi 
pB (34) 

where <!>' * d$/dx. Note that the negative sign for the 
elements on the RHS of the above equation is present be- 
cause flux values are directed outward from each of the 
two regions. The linear equations resulting from imposing 
boundary conditions at the top of the grating are similar 
to (33) and (34). 

In the following discussion, a unique representation of 
the field and flux values will be represented in terms of 
the discrete Founer series of the spatial harmonics. This 
simplified representation is possible because 1) the 
boundary element locations are situated at uniform points 
along the top and bottom of the grating, and 2) the prop- 
agation term has been lifted. If Ay is the total number of 
boundary elements, then KA = lit fSf. In terms of the 

spatial harmonics \j/in% the amplitude coefficients are 
Njll - | 

«M*3.-/) =     2     tf*,(*3)exp<-;n#fci).     (35) 
n m -H//2 

Putting W = exc. (-j2*/Nf), *3U3, zt) = <J>, 
^3*U3, Zi) W~n'~, the above expression can be 

*, -I^r". (36) 

and <Z>n = 
written as 

The sets of numbers fy and i£„ form a discrete Founer 
series pair of order Nf, denoted as 4>/ *+ <z>„. The inverse 
is [20] 

«.-ST?*"-- (37) 

Similarly, the flux terms produce a set of numbers <*>/ and 
$'„ that form a discrete Fourier series pair of order AV, 

The quantities <t>„ and <t>'n are related through the trans- 
formation given in (11) 

±2 
<t>n 

n»2\ +   T}n22h4n 

T}„\] + Tinl2hA 

= -l/WO (38) 

where T^nkl is the kith element of the matrix T}„ as given 
by (12). (The negative sign has been added to the defini- 
tion of rn to reflect the fact the outward flux from regions 
A and B is directed in the negative x direction. This rep- 
resentation simplifies a later result.) In the event that the 
number of layers below the grating must be increased, the 
equivalent matrix elements must be used in (38). (The 
equivalent matrix is the product of the transfer matrices 
of the individual layers.) 

The application of the boundary conditions at the bot- 
tom of the grating as described by (33) and (34) yields a 
linear relation between the field and flux values given by 

(39) 
'uf 

= <H 
>f 

luil L#»jJ 
where (R is the circulant [20] matrix 

<R = 

RQ R\    '   ■   '    Ry,- | 

°Sf- \   RQ '    ' Rsf-i 

LRx R, Ro    -I 

(40) 

The elements Rt and r„ also form a discrete Fourier series 
pair of order Nf, where 

R,= ErBr'. (41) 
n 

Application of the boundary conditions at the top of the 
grating is similar to the process at the bottom. Although 
the particular problem at hand has only one layer above 
the grating, multiple layers above the grating can be 
treated similarly to the method described above for mul- 
tiple layers below the grating. The field and flux values 
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are linearly related according to 

Lc/f. 
= 5 

Pi 
LP?J 

(42) 

where S is a circulant matrix whose elements 5/ are de- 
termined from the discrete Fourier series 

5, «Si, »"" (43) 
/i 

where sn m ~\/(Nfhln). 
After appropriate substitution we end up with a system 

of NA + NB equations and NA + NB unknowns; the coef- 
ficients of the NA + NB unknown boundary fields and their 
normal derivatives form the complex elements of the ma- 
trix 3F [14]. The resulting linear set of equations becomes 

'ui 
Pi 

Pi 
DB 

ui 
Pi 

A 

= 0. (44) 

Pi 

IPI 
The matrix Sr is partitioned with 2 rows and 8 columns as 

'{Hi +7Gi)e^A'=    -GA
be-"A2 

ff = 

first presented by Peng et al. [21]. Fig. 1 shows the basic 
structure with the following parameters, A = X/2, (X is 
the free-space wavelength), *, = 1, *3 = 3, *c4 = 2.3, and 
the waveguide thickness u>3 = X/7T. In this structure the 
duty cycle is 50%. The wavelength X. = 2T/J3 of the 
fundamental Floquet-Bloch mode has an upper and lower 
bound satisfied by X/V3 < X. < \/yfl3 so that the sec- 
ond Bragg condition (X. - A) has not been reached. This 
means that leaky wave radiation will occur in the back- 
ward direction. 

Before illustrating the computation of the characteristic 
values of the propagation constant the values of the Fou- 
rier series pair r„ and Rt are shown for the values Na = 
10, Nc ■ 8, and the tooth height u>2/X = 0.2. The number 
of points taken around the boundaries of regions A and B 
are identical. The tooth height-width ratio corresponds to 
4/5 so that the present boundary element configuration 
yields equal partition lengths along the horizontal and ver- 
tical sides of the tooth. Fig. 3(a) shows the magnitude of 
r„ while Fig. 3(b) shows the magnitude of Rt. The coef- 
ficients rn decrease as \f\n\ for large n values. Although 
exact values of rn depend on 7, changes of their respective 
values in the vicinity of the second Bragg condition are 
rather small. For the present condition, the major coeffi- 
cients rn are for n = 0, -1, -2. These harmonics will 
be dominant in the transform, clearly shown in Fig. 3(a). 

Generally the discrete Fourier series pair are associated 
with either a space harmonic quantity (integer n) or space 

HAri<RM - G
A
Y

A
 HArA

a<RAB 

Hi - yGA 

Hi 

rjA-n A c /-• .4 T* A      LHT^C 
«c1 fö/W   -   W1  c      "c1  c^AB 

+ yGi -cU^ wfrfsfl< 
rfipfi ijtfr<äo /-BT^B 

«r1  c &BB   ~   t/rlfJ 
(45) 

Such a homogeneous system of linear equations will 
have a nontnvial solution provided that the determinant 
of the matrix $ vanishes. Since the only unknown in 5 is 
7, the resonant solutions, if any, of the determinantal 
equation will give the propagation constants for the struc- 
ture modes: 

det[$(7)] = 0 (46) 

Following the computation for 7, all the unknown fields 
and derivatives can be evaluated under a suitable normal- 
ization condition. A complex root finder routine based on 
Muller's method has been used for the numerical evalu- 
ation of the above secular equation. The Floquet ampli- 
tudes for the field expansion in all the uniform regions can 
subsequently be evaluated. 

VII. NUMERICAL RESULTS 

The characteristic values of the propagation constant 7 
were computed for several boundary partitions to illus- 
trate the convergence of the attenuation coefficient a. This 
example, with frequent appearance in the literature, was 

position (integer/). The space harmonic <i>„ and the "am- 
plitude" function 4», are shown in Fig. 4 for the 5 x 4 
configuration. Note that the "dc" component n = 0 and 
the n = - 1 harmonic are dominant. Most of the harmonic 
amplitudes are below two orders of magnitude below the 
dominant term. 

The computed value of 7 depends on the number of 
boundary points. For the 5 x 4 partition with the above 
geometry, aX = 1.9096 x 10"2 and ß/l^ = 1.5795. (The 
computed values given by Peng et al. [18] are aX = 
1.8716 x 10"2 and ß/k^ = 1.5809.) Increasing the par- 
tition number by 4, to 20 x 16, gives orX = 1.8713 x 
10"2 and ß/ko = 1.5806. Although the latter partition 
gives results almost identical to that of Peng et al. at a 
tooth height of >v2/X = 0.2. the accuracy of the compu- 
tations vary with tooth height. 

Computation of the attenuation coefficient versus grat- 
ing depth will now be considered. Each of the curves gen- 
erated stan at a tooth height of 0.2. The attenuation coef- 
ficient decreases monotonically as the grating depth tends 
to zero. In the first example, illustrated in Fig. 5 as 5 x 
\, Na - 5 and Nh - 1. The value of a tends to zero much 
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Fig. 3. The coefficients (a) \r„\ and (b) \Rt computed at the bottom of the 
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Fig. 4. The discrete Fourier series pair *, *•* <■>„. 

TABLE I 
THE EIGENVALUE CONVERGENCE IN TERMS OF 

THE NUMBER OF BOUNDARY ELEMENTS 

N0 x Nc a\ x 10' ß/ko 

5x4 1.9096 1.5795 
10 x 8 1.8767 1.5803 
20 x 16 1.8713 1.5806 
25 x 20 1.8710 1.5807 
Peng et at 1.8716 1.5S0S 

W,/\   =   0.20. 

a 

■z. 
q 
< 

L1J 

< 

TOOTH   HEIGHT 

Fig. 5. The attenuation coefficient a\ as a function of the grating depth 
H-:/\. The solid curve represents the data from [18]. The remaining curves 
are computed using the boundary element method with the number of 
boundary points denoted as A'j x A'^. 

earlier than in the cases for the higher number of ele- 
ments. As the number of elements is increased, in the next 
two examples denoted as 25 X 5 and 25 x 20, the new 
curves approach that calculated in [21], however, it is 
noted that there are only slight differences in the two 
cases. For tooth heights iv2/X > 0.06 the solution of the 
latter two examples appears to be relatively accurate. 

All calculations as illustrated in the figure use H
{

Q
]
 for 

the Green's function. However, when Y0 was used, the 
calculated results showed pronounced degradation for the 
attenuation coefficient. In particular, all curves with sim- 
ilar boundary element numbers calculated using YQ for the 
Green's functions tend to zero more rapidly with decreas- 
ing grating depth than that illustrated by the 5 x 1 curve. 

VIII. CONCLUSION 

The boundary integral formulation has been used to cal- 
culate the Floquet-Bloch modes of two-dimensional pe- 
riodic waveguides. In the formulation of the method a new 
technique has been developed for matching the fields in- 
side the grating to those outside the grating. Although the 
four layer structure used to illustrate the method is rela- 
tively simple, an extension to multilayer waveguide struc- 
tures can be easily effected. In the event that gratings be- 
come geometrically complicated, it will be necessary to 
increase the number of boundary points along the unit cell. 
The techniques developed here can be applied to more 
complicated tooth forms, requiring some of the numerical 
computations to be carried out efficiently. For example, 
the <R and S matrices are computed using discrete Fourier 
series. When the number of points N* and NB

a are large 
efficient FFT algorithms can be used to speed the com- 
putation of the matrix elements. 

APPENDIX 

The program ADAPT was written to evaluate the ma- 
trix elements of 9 and 3C. It estimates the value of inte- 
grals of the form 

Sljl 

fort > a > 0. For user specified values of ABSERR and 
RELERR, ADAPT computes an estimate /, of l} whose 
absolute error is bounded above by max {ABSERR, RE- 
LERR* \t\}. ADAPT obtains this estimate by creating a 
partition {[ah £>,]: i = 1, n} of the interval [a, b] with the 
property the error in the estimates of the integrals over 
[ah bj] are sufficiently small. The integrals over [<?,-, bf] 
have one of the following two forms: 

j   g(x) dx = {bt - a,) Jo gfja, + (bt - a{)t) dt 
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or 

j.   log (~j g{x) dx - k ]o log ßj gib,!) dt + b, 

log(£){g(M* 
where bt > a, > 0. ADAPT uses a Gauss-Kronrod rule 
with weight 1 to estimate the values of the integrals 

]  g(a, + {hi - af)t) dt   and   j  g{b{t) dt 

and a Gauss-Kronrod rule with weight log (\/x) to esti- 
mate the value of the integral 

1 l0g ( o10g(Jj 
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Surface Emitting Characteristics of Silicon Waveguides* 

N. Urimindi,* C. S. Yeh,* Jin Liu* and   J. K. Butler* 

Abstract 

The objective of the present paper is to demonstrate surface emitting characteristics of 
silicon waveguides in the mi Hi meter-wave frequency band. Waveguides used in the experiment 
are rectangular slabs of high resistivity silicon ( 30,000 ohm.cm). A series of perturbations on 
the silicon waveguide are required to provide a radiating surface. The second Bragg frequency is 
fixed at 90 GHz from which the grating period, height and the duty cycle were calculated. A 
rectangular grating with period A = 1.08 mm, height = 0.35 mm, and duty cycle = 0.46 was 
etched on the surface of the silicon slab. The ends of the waveguide were tapered for efficient 
coupling of power to and from the metallic waveguides. Experiments are performed to measure 
the attenuation, dispersion and the radiation characteristics of the said waveguides. The test 
setup was used to monitor the frequency, radiation angle, and the radiated power. 
Measurements are made over a band of frequencies around the second Bragg frequency. We 
have scanned the detector from 88-95 GHz and were able to observe the change in the 
attenuation constant, dispersion relation and the far-field radiation pattern. The observed 
experimental results are found to be in good agreement with their theoretical counterparts. 
From these results we were able to verify the grating theory. 
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Figure la Experimental Set-Up Figure lb 

The present waveguide was designed to operate at a second Bragg frequency of 90 GHz. 
The source is an IMPATT diode oscillator with a frequency range of 88-95 GHz. In this 
experiment the silicon waveguide is inserted between the two metallic waveguides. One of them 
guides the modulated output power of the source to the silicon waveguide. The surface waves 
propagating on the silicon waveguide is coupled to the other metallic waveguide the output of 
which couples to the detector. Variable attenuators are placed at appropriate places to control 
the of power. A series of rectangular periodic grating is etched on the waveguide surface in order 

* The authors are with  the Department of Electrical Engineering, Southern Methodist 
University, Dallas, TX 75275. 
** Supported in part by the Army Research Office. 
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to study the radiation pattern. A second detector is placed at the broad side of the siliron 
waveguide to measure the radiation pattern. The output of the detector is monitored with the 
help of persona] computer, which displays the radiation pattern, frequency and the anHe of 
radiation. °    U1 

Results 

The variation of attenuation constant with frequency is shown in Figure la Fieure lb 
shows the dispersion characteristics of the waveguide. The theoretical results are also included 
in the same figure for comparison. Figure 2 shows the radiation pattern emitted by the silicon 
waveguide at different frequencies. It is observed that the radiation angle of the beam can be 
controlled by the source frequency. 

Conclusion 

We have measured the attenuation constant, the dispersion relation and the far-field 
radiation pattern of a silicon waveguide with rectangular grating. The results shown were in 
clo^e agreement with the theory. From the radiation pattern, we can build an electronicallv 
stecrable antenna which can operate at millimeter wavelengths. Since the waveguide is made of 
silicon, it is possible to integrate the whole system on a single chip. 

Angle m degree 

F\ "igure 2 
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Experimental Analysis of Metal Coated Dielectric Waveguides** 

C. S. Yeh,* N. Urimindi* Jin Liu,* and J. K. Butler* 

Abstract 

In this paper we have investigated the experimental characteristics of metal coated 
dielectric waveguides with a rectangular surface corrugation. The waveguide is designed to 
operate at a second Bragg frequency of 90 GHz. The period, height and the duty cycle of the 
rectangular grating were calculated from the chosen frequency. A metallic layer of aluminum is 
sputtered on one side of the slab waveguide. The purpose of the metallic layer is to simulate a 
layer of high density plasma on the surface of the waveguide instead of using an optical source. 
Experiments are performed to examine the far field radiation pattern, attenuation constant and 
the dispersion relation. Due to the presence of the plasma layer there will be an angulcr shift in 
the far field radiation pattern. We have observed a phaseshift of about 20° in the radiation 
pattern of the waveguide before and after coating the metallic layer. Measurements are made in 
the frequency range of 88-95 GHz. This waveguide structure can be used to de sign an 
electronically steerable antenna and an electronic phaseshifter operating in the millimeter-wave 
frequency band. The experimental results are in good agreement with the theory« This way we 
have verified the grating theory experimentally. 

Figure la 
Experimental Set-Up 

Figure lb 

The waveguide was fabricated from a wide slab of alumina whose dielectric constant 
c mm 9.6. A rectangular periodic grating is etched on the surface of the waveguide so as to 
observe the radiation pattern. The teeth height, duty cycle and the period of the grating was 
chosen such that the waveguide operates at a second Bragg frequency of 90 GHz. An Aluminum 
layer of 1 /im thickness was sputtered on the fiatside of the waveguide to simulate a plasma 
layer. For excitation the waveguide was inserted between the two metallic waveguides; One 
guides the modulated output power of the source to the dielectric waveguide. The surface waves 
propagating on the dielectric waveguide were coupled to the other metallic waveguide whose 

*  The authors are with the Department of Electrical Engineering, Southern methodist 
University, Dallas, TX 75275. 
** Supported in part by the Army Research Office. 
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output was monitored by a detector. A second detector was placed at the broad side of the 
dielectric waveguide to measure the radiation pattern. The output of both the detectors were 
monitored with the help of a computer, which displays the radiation pattern, the frequency and 
the angle of radiation. 

Results 

The variation of attenuation and the dispersion characteristics with frequency are shown in 
Figure la and lb respectively. Theoretically computed values of the attenuation constant and 
the dispersion relation are also included in the same figure for comparison. Figure 2 shows the 
radiation pattern of the waveguide before and after sputtering at different frequencies. We have 
noticed an angular shift of about 20° in the radiation pattern of the waveguide with and 
without the metallic layer. 

Conclusion 

High density plasma was simulated by depositing an Aluminum layer on the flat-side of 
the waveguide. The angular shift in the radiation pattern before and after coating the metallic 
layer was measured. Typical value of the angular shift observed was 20° which is significant 
enough to build an electronic phase shifter to be operated at millimeterwave frequencies. The 
dispersion relation and the attenuation constant were also measured in the frequency range of 
present interest. 
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DESIGN AND PERFORMANCE OF CORRUGATED WAVEGUIDES BASED ON SLAB 

WAVEGUIDE PRINCIPLES * 
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ABSTRACT 
A simple design is developed for corrugated waveguides for operation in the millimeterwave range of 

frequencies. The method determines both the corrugation period and the depth. The design is based on slab 
waveguide principles and uses solutions of the (scalar) boundary value problem of the slab waveguide to 
determine the corrugation depth and the corrugation spacing. The design technique compares well with other 
techniques developed for the purpose. Reflections at 90° at certain specific wavelengths are measured in the far 
field to obtain »he radiation patterns. The patterns show good agreement with theoretical pedictions confirming 
the effectiveness of design principles used. Measurements range in the frequencies from 90 GHz to 100 GHz. 

1. INTRODUCTION 
Corrugated waveguide structures have been widely used either as passive optical elements or as components 

of lasers. More recently, corrugations have been used in high power DBR surface-emitting diode lasers and 
laser arrays. Applications include leaky wave antennas and use as surface emitting structures [1], [2]. In most of 
the applications, the corrugated waveguides are periodic. The two unknown parameters in a corrugated 
waveguide are the spatial variation of the corrugation period and its depth measured along the guide. At any 
wavelength, significant coupling between two contradirectional waveguide modes takes place only at the 
corrugation period where the Bragg condition is satisfied. 

The dielectric corrugated waveguide has four geometrical parameters by which it can be characterized: the 
height of the uniform waveguide, the thickness of the corrugation region T, the period of corrugations A, and 
the aspect ratio of the periodicity. The period of corrugation is the most important design parameter. The 
choice of A determines whether single or multiple beam radiation is obtained and has a determining influence on 
the radiation angle <J>n and on the propagation constant. 

The periodicity produces an infinity of space harmonics associated with the leaky mode; the phase constants ßn 

of the various space harmonics are related to the phase constant ß of the basic wave. The propagation constant and 
the leakage constant of this category of antenna structures is found by solution of the (scalar) boundary value 
problem for infinite width. The latter is a measure of the power leaking per unit length along the length of the 
^electric structure. 

2. THEORETICAL BACKGROUND 
The waveguide antenna structure consists of two parts: one is the uniform waveguide (unperturbed 

structure) and the other is the periodic layer. The width of the structure is 'W, the period of the corrugations is 
'A' and the height of the corrugated teeth is 'T\ As an exact electromagnetic boundary value problem, periodic 
dielectric waveguides have been treated for normal incidence (with respect to the direction of the grating 
grooves and with the assumptions that both the antenna structure and the source distribution do not depend on 
the coordinate parallel to the grooves (y-axis). Under these simplifying conditions, a general electromagnetic 
wave propagating in periodic waveguide can be decomposed into independent TE and TM modes. The studies 
carried out in this case pertain mainly to the TM mode propagation in the waveguides. 
The waves supported by periodic corrugated dielectric structures behaving like antennas radiate  as  they travel 
along the antenna. The lowest leaky mode is of interest. The leaky wave mode has a phase constant ß and an 

attenuation leakage constant a. The phase constant of the n1*1 harmonic is related to that of the basic wave by 

* Supported in part by the Army Research Office 
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where n is the order of the given space harmonic and n = 0 corresponds to the basic wave. If a space harmonic is 
slow along the dielectric interface, it is purely bound; if it is fast, it will radiate power away at an angle given 
by 

t     ßn       nXo 
<>n  =  sin*1  (— + —) (2) 

where X0 is the free space wavelength, ICQ = 2n/XQ is the free space wave number and <f>n is the radiation angle 

measured from the positive x-axis. 

2.1. Design of Corrugated Waveguides 
The design of a corrugated waveguide is based on the physics of a four layer waveguide [3], [4], The 

algorithm for the design is based on TM mode propagation in the active layer of the device. The solution of the 
wave equation from the Maxwell's equation is sought in each of the four regions. The solution of the four layer 
problem in terms of estimating the propagation constant of the propagating wave, depends on the solution of 
the secular equation. 
2.1.1 . Design Procedures 

The propagation constant ß is obtained as a solution of the secular equation obtained as a boundary value 
problem in the four layer waveguiding structure. The wavelength of the wave in tbs guide is obtained as 

h = f <3> 
Knowing ß, Xg can be calculated. The grating spacing A is of the order of the value of X.g. If the corrugation 
spacing is made equal to \„, the radiation will be normal to the waveguide at the design frequency, of the 
waveguide. If A is slightly different from Xg, the frequency at which <>n = 0 will be slightly different from the 
frequency designed to be zero. 

Using the procedures outlined above, a waveguide structure is designed on which corrugations are created 
in active layer of the structure. The corrugated waveguide is made of alumina of thickness 40 mils and dielectric 
constant of 9.6. The design is carried out for a frequencies of operation in the millimeterwave range. The 
dielectric constant in the region 3 of interest is dependent on that in regions 2 & 4 which in turn depends on 
the duty cycle of the corrugations. The dielectric constant K3, in the active region  is 

K3  =   Dc x K2   +   ( 1 - Dc ) K4 (4) 

where Dc is the duty cycle of the periodicity. This value in region 3 is the average value of the dielectric 
constants in the corrugated region. The periodicity of the waveguide, dependent on the frequency of operation 
is related to the duty cycle and the width of the corrugations by 

W  =   yDc     x     X0 (5) 

where X0 is free space wavelength under consideration. 

The corrugations are created using a diamond blade, the blade thickness T, being related to the periodicity 
A by 

T  - A [1 -DJ (6) 

Computations are made to find the different heights in the corrugations for the different blade thickness at 
different duty cycles of the corrugations. The blade thickness being a constant in this case, the approriate tooth 
height of necessity is chosen. 
2.1.2. Example 

An example of the design procedure followed in one of the constructed waveguides is given for a 
waveguide designed to operate at 85 GHz. The main criterion was to find the height of the corrugations and the 
grating period A given the blade thickness T. Assuming a value of 0.55 mm for T, computations are made for a 
number of different tooth heights corresponding to different blade thicknesses for different duty cycles. These 
values are shown in figure 3. If we desire a weak grating of tooth height 0.2 mm, from figure 3, the duty cycle 
of the corrugations is 0.6. Corresponding to a duty cycle of 0.6, the grating period works out to a value of 
1.375 mm. Hence the design specifications for an alumina waveguide of thickness 40 mils and dielectric 
constant of 9.6, for propagating TM modes are that for a tooth height be 0.2 mm and blade width 0.55 mm, the 
grating period is 1.375 mm. The performance of the waveguide was in close agreement to theoretical 
predictions. 

2.3. Measurement of Radiation Pattern 
The main direction of the radiation from the dielectric grating structure is found from equation (2). The 

experimental set-up used to measure the radiation pattern of the waveguides considered hitherto is shown in figure 2. 
The various components in the set up include a frequency tunable IMPATT diode oscillator (SI), a ferrite modulator        68 



(Ml), a precision frequency meter (FM1), variable attenuators (A1,A2), 3-dB coupler (DC1), rotary phase shifter 
(PHI), manual waveguide switches (SW1, SW2), matched terminations (T1,T2,T3,T4), flat broadband detector with 
horn antenna set up in z-polarization (Dl) and the corrugated waveguide under observation. 

Electromagnetic wave propagating in each of the four regions can be written as superposition af space harmonics 
generated from the periodic grating. For TM modes: 

00 

Hy(x,z) = VH|pexp (ikmz) (7) 

-oo 

where HU   is the magnetic field amplitude of the ntn space harmonic in the subregion j( = 1,2,3,4) and k^ is 

the z-component of the complex wavenumber. 
The antenna dimensions is chosen such that only the n = -1 space harmonic radiates. Hence for the calculation of 

the radiation pattern, the field pattern in the plane x = t can be approximated by the contribution of the n= -1 harmonic 
alone. 

The field described above is one of the two self consistent solutions for the slab waveguide. The first of the 
solutions is the TM modes consisting of the components Ex,Hy,and Ez The TM modes of the slab dielectric 
waveguide match the TEQI in the metallic waveguide best. Just one mode being supported by the mettalic waveguide 
is due to the small dimensions of the mettalic waveguide(1.25mm x 2.50mm). The cut off frequency of this TEQJ 

dominant mode is 60 GHz while the next mode TEQJ is cut off at 120 GHz. In the experiment, the source oscillator is 
operated in the frequency range 90 GHz to 100 GHz. As seen from the above equations the metallic waveguide can 
only support the TEQJ mode. 

3. RESULTS AND CONCLUSIONS 
Corrugated waveguides were designed at millimeter wave frequencies. Experiments indicated that in the 

average case, ratio of beam spread to the corresponding shift in frequency was in the range of about 1.9°/GHz. 
The key parameters like tooth height and corrugation spacing were varied theoretically and experimentally to 
determine their effect. Results show that the radiation angle is sensitive to changes in corrugation spacing. This 
can be used to give and indication as to how the waveguide should be designed to cover a desired range of 
angular scan. 

Figures 1 and 2 show the basic waveguide structure, the geometry and the experimental set up for 
experimentation of the waveguides. Figures 3 and 4 outline the design procedure for an example considered at 
85 GHz. Figure 5 and figure 6 show experimental results of radiation patterns for single and double section 
waveguides. Accurate results were difficult to obtain in waveguides with two sections as it appeared that 
reflected and scattered radiation from one had an effect on the radiation on the second section. Some theoretical 
studies were made to study the radiation patterns from a waveguide designed at a specific frequency but having 
varying attenuation constants. If P is the incident power into the waveguide and P0 is the power along the 
waveguide at some point 'z' along the waveguide, then P = P0e"az. From this equation, radiation patterns can 
be computed for different values of the attenuation constant. Figure 7 shows such a theoretical study carried out 
at 90 GHz. A number of techniques have been recently studied to design waveguides of the kind considered here 
[6). The technique adopted in this paper proves to be a simple and effective technique for the purpose. The 
results show that the observed radiation patterns fall reasonably well within theoretical limits. 
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Fig: 1    Corrugated waveguide with co-ordinate 
system. W is the widih, T the tooth height 
and A the corrugation depth. 

Fig: 2    Experimental set up for measurement of far field radiation 
pattern from corrugated waveguides. 
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rig: 3    A blade thickness of 0.55 mm and choosing a 
tooth height of 0.2 mm yeilds a duty cycle of 0.6. 

Fig: 4    A tooth height of 0.2 mm and duty cycle of 0.6 
yeilds a value of 1.375 mm for the grating period. 
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Fig:5 Far field radiation pattern from a 
waveguide with tooth height 0.3 mm 
and grating period 1.325 mm. 
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Fig: 6 Radiation pattern in (he far field from 
a waveguide with two sections of cor- 
rugations each designed for 90 GHz- 
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Simulated results of radiation pattern 
from a waveguide designed for oper- 
ation at 90 GHz. Calculations are made 
for different attenuation constants. 


